Skip to main content
Log in

On the weak field approximation of the de Sitter gauge theory of gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The weak field approximation of a model of de Sitter gauge theory of gravity is studied in two cases. Without torsion and spin current, the model cannot give the right non-relativistic approximation unless the density is a constant. With small torsion, a satisfactory Newtonian approximation can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Hereafter, the model of dS gauge theory of gravity is called the dS gravity for short in this paper.

  2. The problem of matching the exterior solution with an interior solution has been studied in [31, 32].

  3. The same connection with different gravitational dynamics has also been studied (see, e.g. [3445]).

References

  1. Riess, A.G. et al.: Astron. J. 116, 1009 (1998), astro-ph/9805201

  2. Perlmutter, S. et al.: Astrophys. J. 517, 565 (1999), astro-ph/9812133

  3. Riess, A.G. et al.: Astrophys. J. 536, 62 (2000) astro-ph/0001384

  4. Riess, A.G. et al.: Astrophys. J. 560, 49 (2001), astro-ph/0104455

  5. Bennett, C.L. et al.: Astrophys. J. Suppl. 148, 1 (2003), astro-ph/0302207

    Google Scholar 

  6. Spergel, D.N. et al.: Astrophys. J. Suppl. 148, 175 (2003), astro-ph/0302209

    Google Scholar 

  7. Wu, Y.-S., Li, G.-D., Guo, H.-Y.: Kexue Tongbao (Chi. Sci. Bull.) 19, 509 (1974)

    Google Scholar 

  8. An, Y., Chen, S., Zou, Z.-L., Guo, H.-Y.: Kexue Tongbao (Chi. Sci. Bull.) 19, 379 (1974)

    MathSciNet  Google Scholar 

  9. Guo, H.-Y.: Kexue Tongbao (Chi. Sci. Bull.) 21, 31 (1976)

    Google Scholar 

  10. Zou, Z.L., et al.: Sci. Sinica XXII, 628 (1979)

    Google Scholar 

  11. Yan, M.-L., Zhao, B.-H., Guo, H.-Y.: Kexue Tongbao (Chi. Sci. Bull.) 24, 587 (1979)

    MathSciNet  Google Scholar 

  12. Yan, M.-L., Zhao, B.-H., Guo, H.-Y.: Acta Phys. Sinica 33, 1377, 1386 (1984) (all in Chinese)

    Google Scholar 

  13. Townsend, P.K.: Phys. Rev. D 15, 2795 (1977)

    Google Scholar 

  14. Tseytlin, A.A.: Phys. Rev. D 26, 3327 (1982)

    Google Scholar 

  15. Sabbata, V.De.: Gen. Relativ. Gravit. 107, 363 (1994)

    Google Scholar 

  16. Wolf, C.: Il Nuovo Cimento A 27, 1031 (1995)

    MATH  Google Scholar 

  17. Canale, A., De Rits, R., Tarantino, C.: Phys. Lett. A 100, 178 (1984)

    Google Scholar 

  18. Müller-Hoissen, F.: Phys. Lett. A 92, 433 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  19. Minkevich, A.V.: Phys. Lett. A 95, 422 (1983)

    Google Scholar 

  20. Huang, C.-G., Zhang, H.-Q., Guo, H.-Y.: JCAP 10, 010 (2008)

    Article  ADS  Google Scholar 

  21. Huang, C.-G., Zhang, H.-Q., Guo, H.-Y.: Chin. Phys. C (High Energ. Phys. Nucl. Phys.) 32, 687 (2008)

    Google Scholar 

  22. Shie, K.F., Nester, J.M., Yo, H.J.: Phys. Rev. D 78, 023522 (2008)

    Google Scholar 

  23. Li, X.Z., Sun, C.B., Xi, P.: Phys. Rev. D 79, 027301 (2009)

    Google Scholar 

  24. Huang, C.G., Ma, M.S.: Phys. Rev. D 80, 084033 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. Huang, C.G., Ma, M.S.: Commun. Theor. Phys. 55, 65–68 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Guo, H.-Y., Huang, C.-G., Tian, Y., Wu, H.-T., Zhou, B.: Class. Quantum Grav. 24, 4009 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Guo, H.-Y.: Phys. Lett. B 653, 88 (2007)

    Google Scholar 

  28. Guo, H.-Y.: Scin. Chin. arXiv:0707.3855

  29. Guo, H.-Y., Huang, C.-G., Tian, Y., Zhou, B.: Front. Phys. China 2, 358 (2007)

    Article  ADS  Google Scholar 

  30. Huang, C.-G., Ma, M.-S.: Front. Phys. China 4, 525 (2009)

    Article  ADS  Google Scholar 

  31. Zou, Z.-L., et al.: Acta Astron. Sinica 17, 147 (1976)

    ADS  Google Scholar 

  32. Chen, S. et al.: Scientia Sinica 35, (1976) (both in Chinese)

  33. Hehl, F.W., Ne’eman, Y., Nitsch, J., Van der Heyde, P.: Phys. Lett. B 78, 102 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  34. MacDowell, S.W., Mansouri, F.: Phys. Rev. Lett. 38, 739 (1977). Erratum-ibid. 38, 1376 (1977)

  35. Stelle, K.S., West, P.C.: Phys. Rev. D 21, 1466 (1980)

    Google Scholar 

  36. Wilczek, F.: Phys. Rev. Lett. 80, 4851 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Freidel, L., Starodubtsev, A.: Quantum gravity in terms of topological observables, arXiv: hep-th/0501191

  38. Armenta, J., Nieto, J.A.: J. Math. Phys. 46, 112503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. Leclerc, M.: Ann. Phys. 321, 708 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Wise, D.K.: MacDowell-Mansouri gravity and cartan geometry, arXiv: gr-qc/0611154

  41. Mahato, P.: Mod. Phys. Lett. A 17, 1991–1998 (2002). arXiv:gr-qc/0604042

  42. Mahato, P.: Phys. Rev. D 70, 124024 (2004), arXiv:gr-qc/0603100

  43. Mahato, P.: Int. J. Theor. Phys. 44, 79–93 (2005), arXiv:gr-qc/0603109

    Google Scholar 

  44. Mahato, P.: Int. J. Mod. Phys. A 22, 835 (2007), arXiv:gr-qc/0603134

  45. Tresguerres, R.: Int. J. Geom. Meth. Mod. Phys. 5, 171 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kibble, T.W.B.: J. Math. Phys. 2, 212 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Sciama, D.W.: Rev. Mod. Phys. 36, 463 (1964)

    Article  ADS  Google Scholar 

  48. Zhang, Y.Z.: Phys. Rev. D 28, 1866 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  49. Tseytlin, A.: Phys. Rev. D 26, 3327 (1982)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Sen Ma.

Appendix: the process of simplification

Appendix: the process of simplification

When torsion is included, we should study the original form of the Yang-like equation, which reads

$$\begin{aligned} F_{ab\ ||\nu }^{\mu \nu }&= R^{-2}\left(16\pi G S^{\mu }_{\mathrm{M}ab}+S^{\mu }_{\mathrm{G}ab}\right). \end{aligned}$$
(6.1)

where \(R\) is the radius of de Sitter spacetime. Again, suppose the spin currents of matter fields vanish. We have

$$\begin{aligned} F_{ab\ ||\nu }^{\mu \nu }&= R^{-2}(S_{\mathrm{F}ab}^{ \mu }+2S_{\mathrm{T}ab}^{\mu }) \nonumber \\&= R^{-2}\left(Y^\mu _{ \lambda \nu } e_{ab}^{\lambda \nu }+Y ^\nu _{\lambda \nu } e_{ab}^{\mu \lambda }+T_{a}^{\mu \lambda }e_{b\lambda }^{} -T_{b}^{\mu \lambda }e_{a\lambda }^{}\right). \end{aligned}$$
(6.2)

Multiply it with \(e^b_\mu \), one gets

$$\begin{aligned} e^b_\mu F_{ab\ ||\nu }^{\mu \nu }=R^{-2}e^b_\mu \left(Y^\mu _{\lambda \nu } e_{ab}^{\lambda \nu }+Y ^\nu _{\lambda \nu } e_{ab}^{\mu \lambda } -T_{b}^{\mu \lambda }e_{a\lambda }^{}\right) \end{aligned}$$
(6.3)

It is

$$\begin{aligned} F_{a ||\nu }^{\nu } -\frac{1}{2} T^\lambda _{\nu \mu } e^b_\lambda F_{ab}^{\mu \nu }&= -R^{-2}\left(2Y ^\nu _{ \lambda \nu } +T_{\mu \ \, \lambda }^{~\mu }\right)e_{a}^{\lambda } \nonumber \\&= -3R^{-2} T_{\mu \lambda }^{\mu }e_{a}^{\lambda } \end{aligned}$$
(6.4)

Multiply it with \(e^a_\sigma \), one gets

$$\begin{aligned}&e^a_\sigma F_{a~\, ||\nu }^{\nu } - \frac{1}{2} T^\lambda _{\nu \mu } F_{\sigma \lambda }^{\mu \nu }= -3R^{-2} T_{\mu \ \, \sigma }^{\mu }\end{aligned}$$
(6.5)
$$\begin{aligned}&F_{\sigma ~\, ;\nu }^{~\nu }= Y^\lambda _{\sigma \nu } F_{\lambda }^{\nu } +\frac{1}{2} T^\lambda _{\nu \mu } F_{\sigma \lambda }^{\mu \nu }-3R^{-2} T_{\mu \ \, \sigma }^{\mu } \approx 0 \end{aligned}$$
(6.6)

A semicolon ‘;’ represents the covariant derivative with respect to Christoffel symbols. Therefore,

$$\begin{aligned}&F_{\sigma ~\, ,\nu }^{~\nu }+\left\{ \begin{array}{l}\nu \\ \lambda \nu \end{array}\right\} F_\sigma ^{\ \lambda } -\left\{ \begin{array}{l}\lambda \\ \sigma \nu \end{array} \right\} F_\lambda ^{\ \nu } = Y^\lambda _{\ \ \sigma \nu } F_{\lambda }^{\ \nu } +\frac{1}{2} T^\lambda _{\ \ \nu \mu } F_{\sigma \lambda }^{\ \ \mu \nu }-3R^{-2} T_{\mu \ \, \sigma }^{~\mu }\qquad \quad \end{aligned}$$
(6.7)
$$\begin{aligned}&F_{\mu \nu }=\partial _\nu \Gamma ^\lambda _{\mu \lambda }-\partial _\lambda \Gamma ^\lambda _{\mu \nu } +\Gamma ^\lambda _{\mu \nu }\Gamma ^\sigma _{\lambda \sigma }-\Gamma ^\lambda _{\mu \sigma }\Gamma ^\sigma _{\lambda \nu } \nonumber \\&\qquad \quad \!\!=\mathcal{R }_{\mu \nu }+\partial _\nu Y^\lambda _{\ \mu \lambda }-\partial _\lambda Y^\lambda _{\ \mu \nu } +\left\{ \begin{array}{l}\lambda \\ \mu \nu \end{array}\right\} Y^\sigma _{\ \lambda \sigma }\nonumber \\&\qquad \qquad -\left\{ \begin{array}{l} \lambda \\ \mu \sigma \\ \end{array}\right\} Y^\sigma _{\ \lambda \nu } +Y^\lambda _{\ \mu \nu }\left\{ \begin{array}{l} \sigma \\ \lambda \sigma \\ \end{array}\right\} \nonumber \\&\qquad \qquad -Y^\lambda _{\ \mu \sigma }\left\{ \begin{array}{l} \sigma \\ \lambda \nu \\ \end{array}\right\} +Y^\lambda _{\ \mu \nu } Y^\sigma _{\ \lambda \sigma }-Y^\lambda _{\ \mu \sigma }Y^\sigma _{\ \lambda \nu } \nonumber \\&\qquad \quad \!\!\approx \mathcal{R }_{\mu \nu }+\partial _\nu Y^\lambda _{\ \mu \lambda }-\partial _\lambda Y^\lambda _{\ \mu \nu }. \end{aligned}$$
(6.8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, MS., Huang, CG. On the weak field approximation of the de Sitter gauge theory of gravity. Gen Relativ Gravit 45, 143–153 (2013). https://doi.org/10.1007/s10714-012-1466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1466-9

Keywords

Navigation