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Abstract The literature relevant to how solar variability influences climate is vast—but

much has been based on inadequate statistics and non-robust procedures. The common

pitfalls are outlined in this review. The best estimates of the solar influence on the global

mean air surface temperature show relatively small effects, compared with the response to

anthropogenic changes (and broadly in line with their respective radiative forcings).

However, the situation is more interesting when one looks at regional and season variations

around the global means. In particular, recent research indicates that winters in Eurasia

may have some dependence on the Sun, with more cold winters occurring when the solar

activity is low. Advances in modelling ‘‘top-down’’ mechanisms, whereby stratospheric

changes influence the underlying troposphere, offer promising explanations of the observed

phenomena. In contrast, the suggested modulation of low-altitude clouds by galactic

cosmic rays provides an increasingly inadequate explanation of observations.

Keywords Solar variability � Global climate change � Regional climate change �
Blocking events � Maunder minimum � Total solar irradiance � UV spectral irradiance �
Galactic cosmic rays � Open solar flux � Stratosphere–troposphere coupling

1 Introduction

Solar electromagnetic radiation powers Earth’s climate system and, consequently, it is

often naı̈vely thought that changes in this solar output must be responsible for changes in

Earth’s climate. However, the huge thermal time constant of the outer part of the Sun limits

the variability in its surface temperature, and hence its total power output, which is

M. Lockwood (&)
Department of Meteorology, University of Reading, P.O. Box 243, Earley Gate RG6 6BB, UK
e-mail: m.lockwood@reading.ac.uk

M. Lockwood
RAL Space, Rutherford Appleton Laboratory, Harwell Campus, Chilton, Didcot,
Oxfordshire OX11 0QX, UK

123

Surv Geophys (2012) 33:503–534
DOI 10.1007/s10712-012-9181-3



dominated by visible and infrared emissions from the solar surface (the photosphere) (see

review by Lockwood 2004). As a result, changes in solar power output on decadal, cen-

tennial and millennial timescales are limited to small changes in effective surface tem-

perature (associated with magnetic fields) and potential, although as yet undetected, solar

radius variations (see reviews by Solanki et al. 2005; Lockwood 2010). Larger percentage

variations are seen in solar UV emissions (Lean et al. 1997) which arise from the lower

solar atmosphere (the chromosphere) (Loukitcheva et al. 2009) and which influence the

stratosphere in Earth’s middle atmosphere between about 10 and 50 km (see review by

Gray et al. 2010). Even more variable are solar X-rays and extreme ultraviolet (EUV)

emissions that originate in the upper solar atmosphere (the corona) and dominate the

behaviour of Earth’s uppermost atmosphere (the thermosphere, above about 90-km alti-

tude) (Le et al. 2011). In addition to these electromagnetic outputs, the Sun modulates

energetic charged particle fluxes incident upon the Earth. Solar energetic particles (SEP)

are emitted by solar flares and from the shock fronts that form ahead of super-sonic (and

super-Alfvénic) ejections of material from the corona (Schwenn 2006). SEPs are incident

upon Earth’s atmosphere in polar regions where they enhance the destruction of strato-

spheric ozone (Jackman et al. 2006; 2008). Even more energetic are galactic cosmic rays

(GCRs). These particles are not generated by the Sun; rather, they originate at the shock

fronts emanating from violent galactic events such as supernovae explosions. However, the

expansion of the shielding solar magnetic field into interplanetary space results in the Sun

modulating the number of GCRs reaching Earth (see, for example, review by Potgieter

2008). Air ions generated by GCRs enable Earth’s global electric (thunderstorm) circuit

(Rycroft et al. 2008), and it has been proposed that they also modulate the formation of

low-altitude clouds (Svensmark and Friis-Christensen 1997). The Sun also emits a con-

tinuous stream of low-energy charged particles called the solar wind (e.g., Marsch 2006). A

small fraction of the solar wind energy incident on Earth is extracted by the geomagnetic

field and deposited in the thermosphere at high latitudes (Cowley 1991; Thayer and Se-

meter 2004). This deposition changes the behaviour of the thermosphere globally (e.g.,

Fuller-Rowell et al. 2007), but this is an extremely low-density atmospheric layer, and

there are no robust observations, nor any confirmed theory, that suggests these thermo-

spheric variations are transmitted through the middle atmosphere to the troposphere below.

Both electromagnetic and charged particle emissions from the Sun are known to vary

over the decadal-scale solar magnetic activity cycle, as do GCR fluxes (see review by

Lockwood 2004). But any effects on climate are much more significant for any variations

over longer timescales. This review discusses and evaluates potential effects on Earth’s

climate of variations in these solar emissions. ‘‘Top-down’’ mechanisms involve solar UV

irradiance (or perhaps energetic particles) modulating stratospheric temperatures and winds

which, in turn, may influence the underlying troposphere where Earth’s climate and

weather reside. These contrast with ‘‘bottom-up’’ effects in which the total solar irradiance

(TSI, dominated by the visible and near-IR) variations cause surface temperature changes

and upward coupling to the troposphere.

2 Historical Perspective

It is interesting to ponder what the author citation h-index of the astronomer Sir Frederick

William Herschel (1738–1822) would be. Certainly, his 1801 paper (Herschel 1801), in

which he speculated on a connection between sunspots and regional climate (for which he

used the market price of wheat as a quantifiable proxy), has been cited a great many times
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and continues to be cited regularly today. Herschel appears to have been more aware of the

limitations of his apparent correlation (writing ‘‘this prediction ought not to be relied on by

anyone’’) than many who have subsequently cited his paper. Indeed, Herschel himself

notes limitations to his speculation that many subsequent studies of solar influence on

climate have failed to adequately consider. Common pitfalls include the following:

1. The potential for selection effects mean that one must ask, ‘‘Would a reported

correlation coefficient be as high if an equivalent data set were substituted?’’ (For

example, in Herschel’s case, was the behaviour of the price of barley similar to that

of wheat? If not, why not?) Selection effects can often arise (unintentionally or

otherwise) from the use of restricted data intervals and/or the choice of which

parameters to compare. Selection effects are the major reason why the specific issues

(2)–(5) below are particular problems.

2. Sunspots are only indirectly related to the solar outputs that are relevant to climate.

(Herschel attempts to build an argument about enhanced emission from sunspots

which we now know to be incorrect).

3. The lack of suitable measurements of Earth’s global climate on long timescales leads

to the use of indirect proxies (Herschel used the price of wheat), and there are many

other factors, unrelated to climate, which can influence such proxies.

4. The climate data used have often been for a limited season (in Herschel’s case, this is

effectively the growing season of wheat) which may not adequately reflect changes

in the annual mean data.

5. The climate data used have often been regional, and not global (Herschel used the

price of wheat in the UK and not on the global market); regional climates show large

variations around the global mean.

6. The data sets are not homogeneous, and measurement series often contain

instrumental drifts and discrete jumps. (Herschel notes this in respect of the sunspot

data available to him).

7. Correlations can occur by chance, and the probability of this happening must be

evaluated, allowing for the persistence in the data time series and the number of free

parameters. Hence, the significance of any correlation must be determined (by

comparison with a suitable noise model). In addition, tests are needed to prevent

‘‘data snooping’’, that is, exploiting a feature in the data that turns out to be a

statistical or instrumental artefact. To ensure that wrong conclusions are not drawn

from statistical coincidences, clear null hypotheses must be formulated and proper

statistical tests performed (Yiou et al. 2010; Legras et al. 2010; Love et al. 2011).

8. Solar variability effects are convolved with other influences on climate (volcanoes,

aerosols, land-use changes and greenhouse gases). For example, Herschel neglected

the effects of volcanic eruptions that occurred during the interval that he studied.

9. The effects of internal climate variability have often been overlooked or underes-

timated. There are internal oscillations (particularly associated with the oceans on

decadal timescales), and a common error is to ‘‘overfit’’ the data, thereby wrongly

ascribing variations to an external solar origin. There are a huge number of

publications looking at oscillations at periods close to that of the solar cycle and/or

correlations with the solar cycle at a fixed lag. Tests of some of these reveal that they

are unlikely to be driven by solar forcing and that they are more likely to reflect other

natural cycles of the climate system or a harmonic combination of various multiyear

cycles (Drijfhout et al. 1999; Moore et al. 2006).
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10. Even a statistically significant correlation or detected periodic signal does not

establish causality, neither do lags nor phase relationships for coupled systems

involving stationary oscillations.

11. Lastly one must ask, ‘‘Is there a realistic mechanism or series of mechanisms that

could have given rise to the correlation?’’ (Herschel’s proposal invoked a chain of

interactions, encompassing solar physics, climate science, agricultural science and

the effect of supply-and-demand in economics!).

The reason why the citation rate for Herschel’s speculation is so high is that a great

many subsequent studies have explored the same ideas. The growth in modern-day interest

can be traced to John A. ‘‘Jack’’ Eddy (1931–2009). Incidentally, Eddy’s h-index is known

and is modest, by modern standards, at 14; however, his most influential paper (Eddy 1976)

has been cited 954 times (citation analysis using Web of Science, October 2011). This

famous paper particularly focussed on European temperature records and the period of

extremely low solar activity (when almost no sunspots were observed) known as the

Maunder Minimum (circa 1645–1715). This topic is discussed further in Sect. 6 of the

present review.

The academic reputation of the field of Sun-climate relations is poor because many

studies do not address all, or even some of, the limitations listed above. It is also a field that

in recent years has been corrupted by unwelcome political and financial influence as

climate change sceptics have seized upon putative solar effects as an excuse for inaction on

anthropogenic warming. In particular, figures and statistics with known errors, limitations

and inaccuracies are repeatedly reproduced on the Internet and in the media (as discussed,

for example, by Damon and Laut 2004), and publications are reported in a massively

selective manner. None of this makes any difference to the scientific reality, or otherwise,

of mechanisms connecting solar variability and Earth’s climate; however, it does make

evaluation of the evidence much more difficult. Recent reviews have been presented by

Reid (2000), Rind (2002), Haigh (2003, 2007), Beer (2006), Foukal et al. (2006), de Jager

(2008), Gray et al. (2010) and Lockwood (2004, 2010, 2012).

3 Solar Variability and Global Climate Response Timescales

Solar outputs reaching Earth undergo periodic variations over a range of timescales. These

include the 27-day variation due to solar rotation, annual variations due to the ellipticity of

Earth’s orbit, the decadal-scale solar magnetic (sunspot) cycle and oscillations between

grand solar maxima and minima on timescales of several centuries. How a key climate

parameter, such as the Global Mean Air Surface Temperature (GMAST), varies in

response to these solar variations will depend on its response timescale. Estimates of the

GMAST response time have varied from less than 1 year to several decades and, in reality,

the role of the oceans means that a spectrum of response times is to be expected. Knutti

et al. (2008) discuss the time constants of different parts of the climate system: short time

scales (1 year or less) apply to atmospheric adjustments and land surface processes;

medium time scales (of order decades) to the melting of sea ice; and long time scales

(many decades) to warming of the whole ocean surface layer. Ocean warming effects are

complex because of mixing behaviour (Hansen et al. 1985), but an effective timescale of

5–20 years has been predicted by Dickinson and Schaudt (1998). The climate response

modelling of Rind et al. (1999) and analysis of pre-industrial data by Waple et al. (2002)

and Weber (2005) yield response times of up to 10 years. Held et al. (2010) use both an
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energy balance model (EBM) and a coupled atmosphere–ocean General Circulation Model

(GCM) to investigate the implications of two time constants—a rapid response on a

timescale of about 5 years and a slower ‘‘recalcitrant’’ response on a timescale of several

hundred years. They show that the rapid response is currently dominant, but the longer

timescale would become important if greenhouse gas emissions were to be stabilised. All

these time constants mean that responses to 27-day solar variations will be damped to

undetectable levels in GMAST, whereas the centennial solar variations should be reflected

almost in full. The extent to which the solar-cycle variations are damped is still a matter of

debate. Some studies find that the GMAST response to recent solar cycles may be 0.1 K or

larger (White et al. 1997; Douglass and Clader 2002; Camp and Tung 2007; Lean and Rind

2009). However, some of the apparent responses found in regression studies of empirical

data may not, in reality, be due to real associations and causality. This is because of one or

more of the potential pitfalls discussed in Sect. 1 (such as overfitting so that internal

variability is ascribed to external forcing, degeneracy between different forcing factors,

understated uncertainties in regression coefficients and in the response to forcing). That

this can be the case has been demonstrated clearly using model simulations (Ingram 2006;

Benestad and Schmidt 2009; Stott and Jones 2009).

4 Global Climate Response

This section considers the multidecadal trends (e.g., Brönnimann et al. 2007) rather than

the great many reports of putative solar-cycle variations observed in the troposphere (e.g.,

Camp and Tung 2007; Coughlin 2004; Gleisner et al. 2005). One reason why the global

climate response timescales have recently become a consideration is the realisation that,

since 1985, all the relevant solar outputs have been changing in the opposite direction to

those needed to explain the rise in GMAST (Lockwood and Fröhlich 2007). Thus, for solar

activity to contribute to recent warming, there must be a long GMAST response time

constant. For example, Scafetta and West (2007) and Scafetta (2009) have employed

multiregression fits of GMAST data that involve a short-timescale response (to allow the

observed weak solar-cycle variations to be reproduced) plus a long-time-constant response.

This is different from the Held et al. (2010) study discussed in the last section because the

longer time-constant response dominates. Multiple regression analysis of this kind has

been used several times previously (e.g., Santer et al. 2001; Lean 2006; Lockwood 2008),

but can be misleading if inter-correlations exist between the data series that are input into

the study or if genuine factors are omitted. In addition, naı̈ve regression analyses may also

be misleading due to convoluted nonlinear response associated with feedback processes,

the use of non-optimal regression techniques or the presence of internal system variability

(Benestad and Schmidt 2009). In general, all forcings need to be considered for the

attribution of climate change and the effects of degeneracy between solar and volcanic

forcings over recent centuries are a particular concern because major eruptions tend to

occur at an average rate near one per solar cycle and even have a periodicity close to the 88

years of the solar Gliessberg cycle (Qu et al. 2011) and because bursts of volcanic erup-

tions and a lack of eruptions can cause long-term cooling and warming, respectively.

Hence, such analyses need to be interpreted with a great deal of caution and judgement

with regard to the choice of input variables and as to whether the conclusions are sensible.

There are other potential pitfalls. For example, there is a strong possibility that the fits of

Scafetta and West (2007) and Scafetta (2009) suffer from a ‘‘data snooping’’ problem as

they are strongly dependent on a feature in the TSI data composite that they employed
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which has been argued to be a calibration error (Lockwood and Fröhlich 2008). Benestad

and Schmidt (2009) present a full critique of the robustness of the fits; however, here, we

simply look whether their implications are sensible or not. Scafetta and West (2007) and

Scafetta (2009) find that solar change contributed over 60% of the temperature rise (i.e.

more than 0.5�C) since pre-industrial times, and it is instructive to ask, ‘‘How does this

agree with the changes in the various radiative forcings?’’

Our best estimates of DS, the change in the average TSI between the Maunder Mini-

mum and recent decades, have decreased over recent years (see review by Gray et al.

2010). Initially, DS was estimated from surveys of ‘‘Sun-like’’ stars (Baliunas and Jastrow

1990; Zhang et al. 1994), but results of more extensive surveys did not confirm the key

result, nor did they support its application to our Sun (Hall and Lockwood 2004; Giampapa

2004). Subsequently, smaller DS estimates have been derived using sunspot numbers and

the open magnetic flux of the Sun, which can be derived from historic geomagnetic data

(see review by Lockwood 2004). These studies find DS to be comparable to the amplitude

of recent solar cycles (i.e. 0.1%) (see Gray et al. 2010 and references therein) and such

estimates are currently employed, for example, in the 2007 IPCC report. The more recent

estimates of the change in TSI equate to a change in radiative forcing of DfS = DS(1 - A)/

4. Earth’s albedo, A, is particularly poorly known (Charlson et al. 2005; Pallé et al. 2009)

but using a best estimate of A & 0.3 (Loeb et al. 2009) gives DfS & 0.24 W m-2. Two

recent papers disagree with this consensus value, but do not agree on even the sign of the

adjustment needed. Schrijver et al. (2011) argue that the consensus DfS is overestimated,

whereas Shapiro et al. (2011) suggest it should be increased by a factor of at least 4, to a

value near 1 W m-2. Where these two papers differ is in their treatment of the ‘‘quiet’’ Sun

between groups of sunspots (‘‘active regions’’), and Lockwood (2011b) argues that neither

makes a compelling case for an adjustment to the consensus value at the present time.

From flask measurements and ice-core data, we can compute the radiative forcing

caused by the observed rises in well-mixed trace (i.e. excluding water vapour) greenhouse

gas (GHG) abundances over the same interval (Forster et al. 2007). The abundance of

carbon dioxide has risen from 280 ppmv in pre-industrial times to 362.5 ppmv in 2000,

which corresponds to ?1.56 W m-2. The corresponding radiative forcing contributions for

other trace GHG are the following: ?0.47 W m-2 for CH4, ?0.28 W m-2 for CFCs/

HCFs/halons, and ?0.14 W m-2 for NOx. This gives a total radiative forcing by trace

GHG of DfG = 2.45 W m-2, which is ten times larger than our best estimate of the solar

forcing DfS. Note that this estimate of DfG is known with considerable certainty from the

analysis of absorption spectra. Persistent reports, mainly in the media and on the Internet,

that absorption lines are saturated (such that adding more GHG does not cause any radi-

ative forcing change) ignore a huge body of research that extends back to the 1950s and are

demonstrably false when one considers the whole IR spectrum (Shine et al. 1995). Energy

balance shows that, for steady state, the observed GMAST rise since the Maunder Mini-

mum would correspond to a total forcing, including feedbacks (which include water vapour

effects), of Df = 5.15 W m-2 (Lockwood 2010). The uncertainty on this estimate is of

order ±0.5 W m-2, dominated by the uncertainty in the pre-industrial temperature, with a

small contribution from the uncertainty in the power stored in the deep oceans.

Thus, to explain the warming with GHG forcing alone requires feedbacks to account for

a forcing of Df - DfG & 2.67 W m-2, that is, a (positive) feedback factor of aG = Df/
DfG & 2.1. To explain 60% of the warming with solar forcing requires a feedback factor of

aS = 0.6 9 Df/DfS & 12.8 and a feedback factor of aG = 0.4 9 Df/DfG & 0.8 for

greenhouse gases. In other words, the fit of Scafetta (2009) requires a huge positive
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feedback for the solar forcing but a negative feedback for the greenhouse forcing. Thus,

this fit raises much bigger problems than it solves and makes no sense physically.

But not all multiple regression fits suffer from such problems. Figures 1 and 2 show the

results of a fit to recent GMAST data (1954–2011) using the method of Lockwood (2008).

Like that by Scafetta (2009), this fit allows for the climate response times (in this case by

passing each input variation through a filter with a response time constant which is iterated

in the fit); however, it differs in that it uses different input variations. In fact, the best-fit

response time for each input was found to be near 1 year and constraining all inputs to the

same response time generated an almost identical fit with fewer free parameters. The

galactic cosmic ray flux is used to quantify the solar input as the data sequence is longer

and more stably calibrated than the available TSI record, and there is a good (anti)cor-

relation between the two (see Fig. 3). In addition, the El-Niño Southern oscillation (ENSO)

can be regarded as an energy input into the surface layer that is quantified by the N3.4

index (based on the sea surface temperature in the equatorial Pacific). Figure 1 shows

excellent agreement between observed and fitted variations for 1953–2011, and Fig. 2

shows that the dominant component of the fitted variation is anthropogenic and the solar

contribution is small (and actually downward on average for this interval). The fit residuals

shown in the bottom panel of Fig. 1 are attributed to internal variability. For this fit, we

find that the contributions to the GMAST rise are in almost the same ratios as the radiative

forcing changes over the interval. This means that the feedback factors required are

approximately the same for all forcings (so aS & aG & 2). This multiple regression fit is

subject to the same set of caveats as all others (i.e. selection effects of the choice of inputs,

inter-correlations between inputs, nonlinear responses and overfitting of internal vari-

ability). However, it does demonstrate that a simple combination of known inputs can

explain the observed GMAST variation (incidentally including any recent apparent
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plateau) very well indeed and in a way that is consistent with the known radiative forcing

changes. Notice that this analysis has not made use of any numerical climate model results.

To be fully rigorous, one has to move to ‘‘detection–attribution’’ studies, in which the

effect of varying an input to a general circulation ocean–atmosphere climate model (GCM)

must be detected above the internal variability of the climate system, as modelled by the

GCM. Results do depend on which GCM is used, although there is also now considerable

degree of agreement between the different models and, indeed, with the results shown in

Fig. 2. A comprehensive review of detection–attribution methods and results is given as

part of the IPCC 4th Fourth Assessment Report (Hegerl et al. 2007). Some key conclusions

in this context are that (a) the combined effects of solar and volcanic forcings has resulted

in a net cooling over recent decades; (b) models simulate much less warming over the 20th

century in response to solar forcing alone than for greenhouse gas forcing alone (Cubasch

et al. 1997; Broccoli et al. 2003; Meehl et al. 2003, 2004; Tett et al. 1999, 2002); (c) in

combination, the greenhouse effect on surface temperatures is dominant over the solar

effect (Stone et al. 2007a, b), although there is some debate about the precise contributions

(Stott et al. 2003); and (d) the changes in the altitude profiles also reveal a dominant

greenhouse gas effect (Jones et al. 2003).

Coupled ocean–atmosphere climate models (GCMs) have developed rapidly over the last

2 decades, and this has altered the details of the attribution of solar effects. In general, the

derived solar-induced changes in GMAST have been small, even for the larger drifts in solar
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radiative forcing predicted by the early TSI reconstructions (Wigley and Raper 1990). Full

comparisons are not possible because the TSI reconstructions have evolved at the same time

as the complexity and resolution of the models has increased. As expected, weaker solar

effects are found for the smaller DS inherent in the more recent TSI reconstructions

(compare, for example, Wigley and Raper 1990 with Zorita et al. 2004 and/or Stendel et al.

2006). Examples of recent GCM experiments giving a relatively large ‘‘bottom-up’’ solar

effect have been presented by Rind et al. (2008). The input solar forcing change between the

Maunder Minimum and the present day used was 0.68 W m-2 (more than twice the con-

sensus DfS discussed earlier) with an input of 1.9 W m-2 from total anthropogenic forcing,

including DfG. This solar forcing is well outside the range of 0.06–0.30 W m-2 quoted by

Hegerl et al. (2007), and the Rind et al. experiments generally gave a relatively large solar

contribution (near 30%) to the total GMAST rise (the total GMAST rise also being larger

than is observed). The tropical response, in particular, was much greater than observed,

consistent with an excessive TSI change input to the experiments.

Rind et al. (2008) used a model with a coupled stratosphere at four different resolutions,

to investigate various aspects of ‘‘top-down’’ solar cycle influence on the troposphere/
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stratosphere system. The results show that the stratospheric response is highly repeatable

and significant. Stratospheric westerly wind increases, driven by a greater equator to pole

temperature gradient, were found to extend down into the troposphere and in some

experiments the jet stream weakened and moved polewards. The predominant tropospheric

response consisted of a warming of the troposphere, with coherent changes in regional

precipitation. The tropospheric response was often not great, but was similar in all the

different simulations. All runs revealed both top-down and bottom-up solar effects, but

they account for only a small percentage of the total GMAST variance. A model described

by Meehl et al. (2003, 2008, 2009) includes ocean–atmosphere coupling and with the

stratosphere and suggests potential resonant connections between UV solar forcing and the

ENSO oscillation, as also discussed by Emile-Geay et al. (2007) and White and Liu

(2008a, b).

5 Paleoclimate Studies and Solar Proxies

For paleoclimate studies, it is important to bear in mind all the potential pitfalls listed in

Sect. 2 of this review. However, there is an additional problem to consider with the data

sequences, which is not a factor for direct observations, namely dating (van Geel and Mook

1989). Because record dates are uncertain, ‘‘wiggle matching’’ is often used (Kilian et al.

1995; Blaauw et al. 2003). Even if this is done with great care, such that the date of any one

data point is not changed by more than the accurately computed dating uncertainty, there is

inevitably a selection effect at work. This is because the adjustments are always made to

improve correlations and not to degrade them. For this reason, there is a marked tendency

for some correlations to degrade as the accuracy of the dating is improved.

An additional factor to bear in mind is that solar variability in paleoclimate studies is

quantified using the abundance of cosmogenic isotopes, usually 14C and 10Be, found in

terrestrial reservoirs. 10Be is a spallation product of galactic cosmic rays hitting atmo-

spheric O, N and Ar atoms; 14C is produced by thermal neutrons, generated by cosmic rays,

interacting with N. About two-thirds of the 10Be are formed in the stratosphere and about

one-third in the troposphere from where precipitation times into the reservoirs are typically

1 year and 1 week, respectively. The deposition into any one reservoir is influenced, to

some extent, by climate conditions (e.g., Vonmoos et al. 2006; Field et al. 2006; Aldahan

et al. 2008; Heikkila et al. 2008). On the other hand, the 14C generated by GCRs takes part

in the carbon cycle and is exchanged with the two major reservoirs, the oceans and the

biomass. Hence, the transport and deposition into the reservoirs where they are detected

(for example, ancient tree trunks for 14C and ice sheets in the case of 10Be) are vastly

different for these two major cosmogenic isotopes. We can discount the possibility that

matching variations in the isotope abundances in their respective reservoirs are similarly

influenced by climate during their terrestrial life history, because the transport and depo-

sition of each are so different. After allowance has been made to both series for the effect

of geomagnetic field changes, the correlation between decadal means over the past mil-

lennium of the abundance of 10Be and the production rate of 14C is 0.81 (with the 10Be

leading, as expected, by about 10 years and a significance level exceeding 99%) (Bard

et al. 1997). This correlation also applies to the more recent data. For example, the solar

modulation potentials (see review by Usoskin 2008) for 1600–1960 derived from 10Be and
14C (as presented by Lockwood et al. 2011b) yield a correlation coefficient of 0.83. The
14C data are the means from tree cores in many parts of the world, but the 10Be data are

from two just ice cores, one from Antarctica and another from Greenland. However, the
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influence of regional deposition variations on the 10Be abundance is known to be small

because the correlation with 14C is high. Thus, it is concluded that the correlations that are

found for both isotopes are associated with the one common denominator in their pro-

duction, namely the incident cosmic ray flux.

The abundances of these isotopes are routinely used in paleoclimate studies as a proxy

indicator of solar irradiance (Bard et al. 2000). Lockwood (2006) showed that the rela-

tionship between production of the 10Be cosmogenic isotope and TSI is monotonic but may

not be linear, depending on the effect of unknowns in the long-term quiet Sun irradiance

behaviour. The flux of the GCRs that generate the cosmogenic isotopes is modulated by

three following influences (Beer 2006): (1) the interstellar flux of GCRs incident on the

heliosphere; (2) the shielding by the heliosphere; and (3) the shielding by the geomagnetic

field. The spatial distribution of the interstellar GCR fluxes in our galaxy is on a suffi-

ciently large scale compared to distances moved by our solar system through the galaxy,

which means that we can neglect variations on timescales of Myr and smaller. The geo-

magnetic field shield has varied on timescales of 10 kyr. This variation has, in the main,

been gradual during the Holocene, although there have been shorter-lived weakenings of

the field (which may be geomagnetic reversal onsets that did not develop) such as the

Laschamp event around 40 kyr ago. To allow studies of the remaining effect, solar vari-

ability, studies have corrected the cosmogenic isotope record to allow for the secular

geomagnetic variations (e.g., Steinhilber et al. 2008, 2009).

Figure 3 investigates the relationship of GCRs and total solar radiance in modern data.

The magnetic flux that leaves the top of solar atmosphere (the ‘‘open solar flux’’, FS) is the

source of magnetic field in the heliosphere, and it is irregularities in this heliospheric field

which scatter GCRs and shield them away from Earth. As a result, there is a good inverse

relationship between FS and the flux of GCRs (Rouillard and Lockwood 2004), which is

demonstrated by the lower panel in Fig. 3. The upper part of Fig. 3 looks at the relationship

between FS and the total solar irradiance, TSI. This relationship is more indirect than that

with GCR flux in that FS is a small, and potentially variable, fraction of the field that

threads the photosphere and thereby modulates the visible/IR emission of Sun (via the

darkening effects of sunspots and the brightening effect of smaller magnetic flux tubes

called faculae: Solanki et al. 2005; Wenzler et al. 2006). FS correlates well with TSI over

the solar cycle (Lockwood and Stamper 1999; Lockwood 2002), and recent studies indicate

that observed TSI does also reflect some of the longer-term drift in FS (Fröhlich 2009).

Modelling of the long-term variations (since the Maunder Minimum) in FS and TSI (Vieira

et al. 2011; Wang et al. 2005) provides support for the broad correlation between the two.

However, it should be noted that GCR fluxes and cosmogenic isotopes are not just

indicators of TSI. Much of the magnetic field that modulates TSI as it passes through the

photosphere also modulates solar UV emissions as it passes though the chromosphere. The

UV part of the solar spectrum is much more variable than TSI and modulates ozone

abundance, temperatures and winds in Earth’s stratosphere (see review by Gray et al.

2010). Composites of observed UV spectral solar irradiance (SSI) had shown little vari-

ation in the spectral shape, such that at all wavelengths they exhibit similar temporal

variations to TSI (Lean et al. 1997), and this has been reflected in centennial reconstruc-

tions of SSI (Lean 2000; Krivova et al. 2009). However, recent observations of the descent

into the current ‘‘unusual’’ (for the space age) solar minimum (Lockwood 2010) cast doubt

on this as they show more variability in the UV and considerable change in spectral shape

(Harder et al. 2009). This implies that at the wavelengths responsible for stratospheric

modulation, centennial variation may be greater than previously thought. These new data

are from the SORCE satellite and are supported by observed changes in ozone abundance
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(Haigh et al. 2010). If confirmed, this is a considerable change in our understanding in

spectral irradiance variability as it means that TSI change is predominantly caused by UV

changes and that the changes at IR/Visible wavelengths are actually in the opposite

direction to those in the UV and TSI. This contrasts sharply with previous models in which

the waveform of temporal variations was taken to be similar at all wavelengths (Lean 2000;

DeLand and Cebula 2008; Krivova et al. 2009). At present, there is no consensus as to how

these new results should be used and incorporated into models. Schmidt et al. (2011) argue

that as the SORCE data come from one instrument (the Spectral Irradiance Monitor, SIM)

and are for a limited period (the declining phase of cycle 23) it is premature to act upon

them. However, it should be noted that the prior data were also limited in temporal and

wavelength coverage, and there are doubts about their accuracy at some wavelengths

(DeLand and Cebula 2008). Unfortunately, the wavelength band in which inter-calibrations

can be carried out is very limited (Lockwood 2011a), and a homogenised data sequence of

spectral irradiance will have to rely heavily on modelling (Krivova et al. 2011), at least

until new space-based instrumentation can be commissioned. At the time of writing, the

latest data from SIM (http://lasp.colorado.edu/sorce/data/) during the rising phase of solar

cycle 24 show a reverse of the changes seen in the declining phase of cycle 23, despite the

low activity levels of the new cycle (Owens et al. 2011). This implies that long-term

calibration drift is not the cause of the radically different trends in the SIM data. SRPM

(Solar Radiation Physical Modelling) analysis combines information of the features in the

solar chromosphere with physics-based solar atmospheric spectral models to compute the

emergent intensity spectrum, and initial work suggests that it is able to reproduce trends

observed by SIM and that solar active regions are not the only cause of the observed

variations (i.e. changes in the quiet-Sun internetwork/network radiance are involved).

The trends suggest that the open solar flux FS may also be related to long-term varia-

tions in solar UV emissions (Lockwood et al. 2010b), and hence cosmogenic isotopes may

be a proxy indicator of UV effects. In addition, cosmogenic isotopes would, of course, be a

direct indicator of any cloud modulation by GCRs, where such a mechanism to be active,

and FS is highly anti-correlated with GCR fluxes (Rouillard and Lockwood 2004). Recent

results relating to the GCR-cloud mechanism are discussed in Sect. 8.

This review focuses on recent work that uses the open solar flux FS to quantify solar

activity. From the discussion above, FS can reveal effects associated with changes in TSI,

UV spectral irradiance, GCRs or even SEP fluxes. In addition, FS is highly correlated with

mean geomagnetic activity levels (indeed it is reconstructed before the start of space

observations using geomagnetic data, Lockwood et al. 2009; Lockwood and Owens 2011)

and so is likely to be linked to reports of climate effects associated with geomagnetic

activity (e.g., Seppälä et al. 2009; Bochnı́ček and Hejda 2005; Thejll et al. 2003).

A great many studies have indicated that solar variations had an effect on pre-industrial

climate throughout the Holocene (the warm interval since the last ice age). These studies

have been carried out in many parts of the world and employ a huge variety of paleocli-

mate proxies. They will not be discussed here, and the reader is referred to the recent

review by Lockwood (2012). The most interesting of these studies employed terrestrial

data that are indicators of more than just local climate and/or where matching signals are

seen at geographically separated sites. Some studies have used proxy data from very large

numbers of sites to reconstruct temperature maps, cross-calibrating with early observa-

tional data (e.g., Mann et al. 2009). Nevertheless, a key point to note is that most paleo-

climate evidence is local, or at best regional, and not global in scope.

Section 4 discussed how solar influence on climate on a global scale has been relatively

minor and how studies that arrive at a different conclusion have been flawed and not
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robust. Section 6 reviews the growing evidence in modern data for solar influences on

some regional and seasonal climates.

6 Regional Climate Effects

Using both a climate model and empirical reconstructions, Shindell et al. (2001a, b) found

that even though solar-induced GMAST changes are small (below about 0.3�C), regional

temperature changes associated with solar variability can be quite large. In their model,

these occur primarily through a forced shift towards the low index state of the North

Atlantic oscillation (NAO) as solar irradiance decreases. This leads to lower temperatures

over the northern hemisphere continents, especially in winter (1–2�C), in agreement with

historical records and proxy paleoclimate data for surface temperatures.

For post-industrial measurements, North and Stevens (1998) applied optimal signal

detection theory to data from 36 regions around globe but found the solar signal was small

and not highly significant. On the other hand, multivariate fits by Lean and Rind (2008) and

Lean (2010) do find strong solar responses in certain regions. Figure 4 shows the multiple

regression maps to modern AST (Air Surface Temperature) data by Lean (2010). These are

derived in a similar way, and using the same inputs, as the fits to global means of AST (i.e.

the GMAST) shown in Figs. 1 and 2. The maps in Fig. 4 are for annual mean data. The top

panel shows that the response to a strong El-Niño event is, obviously, dominated by the

equatorial Pacific, but there is also strong North Pacific cooling and continental North

American warming. The second panel shows that a large equatorial volcanic eruption

produces widespread cooling from 40�S to 70�N, especially in North America and the

North Atlantic Ocean, but strengthened westerly winds, and a more positive phase of the

NAO produces warming in the northern Eurasian continent. The bottom panel shows that

the response to anthropogenic effects is widespread and particularly strong in the northern

hemisphere at middle to high latitudes, as predicted by GCMs (e.g., Stott et al. 2000). The

third panel shows that the response to solar variability is strongest at middle latitudes (near

40�) in both the northern and southern hemispheres, in the vicinity of the interface of the

Hadley and Polar cells (Gleisner and Thejll 2003; Haigh 2003). We would expect climate

to respond to solar variability with distinct seasonality because the lower latitudinal gra-

dient of solar energy in summer means that dynamical processes are then not as strong.

Remember that, as for all such multiple regression fits, the procedure may have overfitted

decadal-scale internal oscillations with the input solar variation and so may have over-

estimated the response. The most noticeable feature is that the northern hemisphere

response is much greater than the southern, with a strong longitudinal variation such that

the biggest effect is over Europe and western Asia (referred to hereafter as Eurasia).

Statistically significant signatures of multidecadal solar activity changes in atmospheric

temperatures in Eurasia have recently been reported by Kossobokov et al. (2010) and Le

Mouël et al. (2008, 2009, 2010) but Yiou et al. (2010) and Legras et al. (2010) argue that

they do not survive proper null-hypothesis testing.

Climate fluctuations for different regions tend to cancel, giving global means that are

much less variable than regional ones and which more clearly reveal trends. Figure 5

stresses how different the behaviour of a regional/seasonal climate in Europe can be from

the global or hemispheric means. The plot uses winter (December–January–February, DJF)

means, TDJF, of the Central England Temperatures (CET) which is the world’s longest

instrumental record and extends back to 1659, at the start of the Maunder Minimum

(Manley 1974; Parker et al. 1992). The CET measurements cover a spatial scale of order
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Fig. 4 Maps of the global responses to given features in the input data series in Fig. 2 from multiple
regression analysis, which give a GMAST contribution of DT which is given at the top of each panel: (from
top to bottom) a the ‘‘super-El-Niño’’ event of 1998, b the Pinatubo volcanic eruption, c solar cycle 23 and
d the net anthropogenic forcing over the period 1980–2006. These are very similar in form to the maps of
the regression coefficients of GMAST presented by Lean and Rind (2008) for the annual time series data
shown in Fig. 2 (after Lean 2010)
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300 km which makes it a ‘‘small regional’’ climate indicator. In winter, the NAO, and

associated changes in thermal advection, contribute to a large fraction of the observed

variability of CET (Karoly and Stott 2006). Comparison of parts (a) with (b) of Fig. 5

shows that TDJF correlates with both open solar flux FS and the hemispheric mean surface

temperature DTN. However, the correlation is very weak in both cases. Lockwood et al.

(2010a) show that there is a subtle solar influence on winter CET in that it is statistically

significant that more cold winters, relative to the hemispheric trend, occur when the open

solar flux is low (i.e. when solar irradiances are thought to be low and GCR fluxes are

high). This can be seen by the lack of points in the bottom-right corner of Fig. 5c which

was found to be significant at more than the 95% level using 6 different tests against the

null hypothesis. Figure 6 shows that both surface temperature and surface pressure in

winter (DJF means) in ERA-40? re-analysis data for 1957–2001 show a clear influence of

FS (Woollings et al. 2010b). Figure 6a shows that difference in the means for low solar

activity (lower tercile of the FS distribution) minus that for high solar activity (the upper

tercile of that distribution). Temperatures are lower in Eurasia by up to 4�K, but note that

they are higher in Greenland by up to 3�K. Figure 6b shows the corresponding plot, sorted

using the NAO index. In fact, the temperature drops in central Europe are not as large for

the NAO sort, being up to about 2�K. The significances of the differences exceed 95% over

a more extensive area in Eurasia for the solar than the NAO pattern. It is also interesting to
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Fig. 5 Scatter plots of mean winter Central England temperature (CET), TDJF, as a function of a open solar
flux, FS and b the hemispheric mean surface temperature anomaly DTN (the HADCRUT3v reconstruction is
here extended to before 1850 using the median of a basket of proxy paleoclimate reconstructions). Points are
coloured according to the date using the scale shown in a. The line in b is the ordinary least squares linear
regression fit, and the grey area bounds the uncertainty range set by the range of the proxy reconstructions
for DTN prior to 1850. The correlation coefficients for a and b are low at 0.23 and 0.25 (significant at the
99.1 and 99.6% levels using the AR (1) noise model). In the case of b, this demonstrates the great variability
of a regional/seasonal temperature around a global-scale mean. c is the same as a, for the detrended winter
CET data dTDJF, where the detrending allows for the hemispheric change DTN and uses the regression line
shown in b. c shows that, even after allowing for the hemispheric trend, most of the coldest winters in
central England occur at lower solar activity, as quantified by FS. Lockwood et al. (2010a) test this against
the null hypothesis that FS has no effect on winter CET values and show that this tendency is statistically
significant at around the 95% level. Several tests were carried out on the differences between distributions of
FS above and below various thresholds in dTDJF. These were then repeated for the differences between
distributions of dTDJF above and below various thresholds in FS
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note that the perturbation circulation pattern for the solar effect is similar to, but still

significantly ([93%) different from, that for the NAO, reaching further to the East.

Early instrumental records from the Maunder Minimum indicate an increased frequency

of easterly winds influencing the UK winter temperatures during exceptionally cold winters

(Slonosky et al. 2001). This is consistent with the circulation perturbation in Fig. 6 and has

also been deduced from indirect proxies (Luterbacher et al. 2001), including the spatial

patterns of changes in recorded harvest dates (Wanner et al. 1995). This strongly suggests a

link with the incidence of long-lived winter ‘‘blocking’’ events in the eastern Atlantic at

low solar activity. Blocking episodes comprise extensive and quasi-stationary anticyclones

which can persist for several weeks, leading to extended cold periods in winter as the mild

maritime westerly winds are replaced by continental north-easterlies and the land surface

cools under cloudless skies. These changes are associated with a meander in the jet stream

in the upper troposphere and lower stratosphere, such that its usual eastward (westerly)

Solar: FS Low - FS High 

NAO: NAOI High - NAOI Low 

2-m  Temperature  difference (K) 

-4

(a)

(b)

-3 -2 -1 0 +1 +2 +3 +4

Fig. 6 a Composite difference maps of winter (DJF) means of mean surface level pressure (MSLP,
contours 1 hPa apart) and 2-m temperature (colour map) between low- and high-solar conditions defined by
the lower and upper terciles of the open solar flux, FS. b Scaled anomalies associated with the NAO for
comparison, in this case the two subsets are for the lower and upper terciles of the NAO index. Data are from
the European Centre for Medium-range Weather Forecasting ERA-40 reanalysis data set (Uppala et al.
2005) extended to cover 44 complete winters (1957/1958 to 2000/2001) using operational data (from
Woollings et al. 2010b). A bootstrap test was employed, resampling the sets of winters in order to estimate
the sampling uncertainty, to test whether the solar pattern in a was different from that associated with the
NAO in b: this found that the two patterns are significantly different at the 93% level
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flow becomes south-westward around the longitude of the event centre (Woollings et al.

2010a). Long-lived Atlantic blocking events at more eastward locations have been found to

be more prevalent at sunspot minimum than at higher solar activity, and this leads to colder

winters in Europe (Barriopedro et al. 2008). Note, however, that to the west of the event

centre warm air is drawn up from the south-west and hence if the blocking event centre

moves exceptionally far to the east temperatures in western Europe may rise rather than

fall: the region where CET is measured is quite close to the average longitude of blocking

event centres and, although it shows a net cooling effect for lower solar activity, this is

much smaller than the effect found further to the east. This evidence suggests that solar-

induced perturbations modulate the North Atlantic jet stream and hence the occurrence of

blocking. Other evidence supports this idea. For example, the effects of the changed

position and frequency of blocking events may be seen as a manifestation of modes of low-

frequency circulation variability which have been found to respond to solar activity giving

increased/decreased frequencies of easterly/westerly circulation patterns over Europe

under low-solar activity conditions (Huth et al. 2006, 2008). Figure 7 (from Woollings

et al. 2010b) studies changes in the occurrence of DJF blocking events, using the means of

the blocking index of Berrisford et al. (2007) from the same data set as used in Fig. 6. The

anomaly, compared to the overall mean, for the high (upper tercile) FS subset is shown on

the left and for low (lower tercile) FS subset the right. For the high FS winters, the blocking

occurrence is up to 6% lower than the average, in a restricted region in the eastern North

Atlantic and over North-Western Europe. On the other hand, for the low FS winters, the

same region shows the blocking occurrence is up to 8% higher. Monte-Carlo tests show

these changes are significant at the 99% level. This modulation of the occurrence of winter

blocking events is highly significant and provides a good explanation of the modulation of

the surface temperatures and pressures seen in Fig. 6.

Fig. 7 Composite northern hemisphere anomalies, relative to the overall mean, of blocking episode
frequency (defined using the blocking index of Berrisford et al. (2007) from the same data set as used in
Fig. 6). Contours in the left and right hand panels show, respectively, the anomalies for the high- and low-
solar activity winters, defined as the upper and lower terciles of the open solar flux, FS, distribution.
Contours are drawn every 2%, with positive/negative contours in red/blue, respectively, with the zero
contour omitted. The grey area shows where the anomalies are significant at the 99% level, defined using a
Monte-Carlo technique (from Woollings et al. 2010b)
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Winter CET values are known to be strongly modulated by the NAO (Karoly and Stott

2006), and modelling has shown that stratospheric trends over recent decades, along with

downward links to surface, are indeed strong enough to explain much of the prominent

trend in the NAO and hence regional winter climate in Europe between the 1960s and the

1990s (Scaife et al. 2005). Furthermore, tropospheric blocking episodes are known to

influence the stratosphere, and there have been strong suggestions that the coupling works

both ways, such that they are also influenced by the stratosphere (Woollings et al. 2010a).

In addition, various empirical studies have reported solar modulation of the NAO (Ru-

zmaikin and Feynman 2002; Thejll et al. 2003). The top-down mechanisms implied are

discussed further in Sect. 7 and are likely to be connected to the centennial scale variations

and phenomena seen in Europe during the Maunder Minimum. For example, the GCM runs

experiments by Rind et al. (2008) produce a relative negative phase of the NAO during the

Maunder Minimum which contributes to predicted lower European winter temperatures at

that time.

Mann et al. (2009) studied regional climate on a global basis using paleoclimate data

from tree trunks, ice sheets, corals and sediments from over 1,000 sites. They searched for

solar influence on pre-industrial climate by comparing the difference between the ‘‘little ice

age’’ pattern (which they define as 1400–1700 AD) and that for the ‘‘mediaeval maximum’’

(which they take to be 950–1250 AD): They find it shows a pattern that has some simi-

larities to Fig. 4c. The reconstruction by Steinhilber et al. (2009) of TSI during the

Holocene from cosmogenic isotopes gives a difference of 0.5 W m-2 between the means

for these two intervals. However, the temporal variations deduced by Mann et al. do not

agree particularly well with the Steinhilber et al. TSI reconstruction. For example, they do

not show any feature at the time of the solar Maunder Minimum (circa 1645–1715 AD).

Mann et al. argue that the spatial pattern is consistent with a relative positive/negative

NAO-AO atmospheric circulation anomaly during the mediaeval maximum/little ice age,

respectively, associated with annular bands of sea-level pressure anomalies that are

positive/negative in the subtropics and mid-latitudes, and negative/positive at subpolar

latitudes. This has been seen in model simulations as a dynamical response to imposed

solar irradiance effects on ozone photochemistry (Shindell et al. 2001a, b).

Detection–attribution techniques have been applied on a regional and seasonal basis.

Studies to date have generally found the solar contributions to be smaller than those of

volcanoes and sulphate aerosols as well as smaller than the effects of greenhouse gas

changes and land-use change. Hegerl et al. (2011) used a multifingerprint technique to

detect a solar response in Europe, but in summer temperatures rather than the winter

response discussed above. This was not robust to all tests and so remains speculative. It

will be interesting to see whether these results change as models with better representation

of the stratosphere are employed and when better characterisation of spectral solar irra-

diance becomes possible.

7 ‘‘Top-down’’ Solar Forcing

The dynamical coupling across the tropopause (Shepherd 2002) means that stratospheric

forcing can influence the underlying troposphere (e.g., Hartley et al. 1998; Song and

Robinson 2004; Matthes et al. 2006; Haigh and Blackburn 2006), and under some cir-

cumstances, robust tropospheric responses are indeed predicted by models. Observational

studies show that stratospheric perturbations (e.g., stratospheric warmings) typically last at

least a month, and on average, tropospheric effects are seen approximately 2 weeks later
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(e.g., Baldwin and Dunkerton 2001). Note, however, that the strong, two-way coupling

across the tropopause means that the appearance of the change first in the stratosphere is

not necessarily an indication that the stratospheric changes are driving those in the tro-

posphere. The latitudes of tropospheric jet streams have been shown to be sensitive to the

solar forcing of stratospheric temperatures (Haigh 1994, 2003; Poore et al. 2004). This

could occur through disturbances to the stratospheric polar vortex (Gray et al. 2004), which

can propagate downwards to affect the tropospheric jets (Plumb and Semeniuk 2003) or

through the effects of stratospheric temperature changes on stratospheric winds and the

refraction of tropospheric eddies (Kushner and Polvani 2004; Simpson et al. 2009). Models

(e.g., Shindell et al. 2001a, b) predict that perturbations can descend from the stratosphere

to the surface by altering the propagation of planetary waves coming up from the surface,

an effect that has been observed in data (Perlwitz and Harnik 2003). However, models that

do not yield realistic stratospheric dynamics fail to capture these wave flux changes. The

tropospheric response is reduced when planetary waves are suppressed in the stratosphere

by additional damping or when the strength of the stratospheric jet is increased. The

models show that the stratosphere could play a crucial role in recent trends. For example,

Scaife et al. (2005) have demonstrated that stratospheric trends over recent decades, along

with downward links to surface, are indeed strong enough to explain much of the prom-

inent trend in the NAO and hence regional winter climate in Europe between the 1960s and

the 1990s.

A wide variety of tropospheric responses has been suggested. Recent numerical mod-

elling by Ineson et al. (2011) has simulated the effect of the large decline in the strato-

sphere-effective UV band inferred from the recent SIM/SORCE measurements by Harder

et al. (2009) and Haigh et al. (2010). As discussed in Sect. 5, there is debate as to whether

these observations exaggerate the variability of the UV irradiance but, on the other hand,

the modelling maintains constant ozone concentrations, and this will underestimate the

effect. The modelled response to the decreasing solar UV begins in the upper stratosphere

and lower mesosphere, consistent with ERA-40? reanalysis data. This signal is largest in

the tropics (Frame and Gray 2010; Lockwood et al. 2010b) and so gives a relative decrease

in the pole-to-equator temperature gradient for lower solar activity. This response is

reproduced in the model and require a weak easterly wind anomaly in the subtropical zonal

mean circulation in the upper stratosphere. As predicted and inferred by Kodera (2002) and

Kodera and Kuroda (2005), this anomaly amplifies as it propagates polewards and

downwards during autumn and winter, giving a weaker polar vortex in December–January

at solar minimum. Ineston et al. use the modelled Eliassen-Palm (EP) flux divergence to

show that this downward propagation and amplification of the wind anomaly is associated

with altered planetary wave activity.

The number and fluence of solar energetic particle events (SEPs) also vary with the

level of solar activity quantified by FS (Barnard et al. 2011). SEPs are directed towards

Earth poles by the geomagnetic field where they generate nitrates on hitting Earth’s

atmosphere as demonstrated, for example, in observations by Mlynczak et al. (2003).

These nitrates are seen to migrate downwards over time (Siskind et al. 2000; Funke et al.

2005), resulting in catalytic destruction of stratospheric ozone (Callis et al. 2000). Large

SEP events generate considerable transient polar ozone depletions, which persist in winter

until UV irradiance of the polar stratosphere resumes (Jackman et al. 2006, 2008; Randall

et al. 2005, 2007). Recently, Seppälä et al. (2009) reported changes in polar surface

temperatures which they associate with large SEP events. It should be noted that they used

geomagnetic activity indices as indicators of the probability of SEP fluence, and these

correlate highly with the open solar flux FS. Thus, it is likely they are observing the same
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phenomenon as reported by Lockwood et al. (2010a), Woollings et al. (2010b) and Bo-

chnı́ček and Hejda (2005) but are using an interpretation based on the model predictions of

SEP effects by Rozanov et al. (2005, 2012). Similarly, the effect reported by Lu et al.

(2008) which they attributed to the solar wind could well be via a correlation with open

solar flux. In this context, it is interesting to note that the effects of SEPs may also be

caused by other precipitating energetic particles, including GCRs or energetic electrons

energised by the solar wind (see review by Rozanov et al. 2012, and references therein).

Chemical and dynamical modelling of the effects of energetic particles has yielded a

surface temperature perturbation pattern similar to that shown in Fig. 6 (Rozanov et al.

2012).

8 Cosmic Ray Modulation of Clouds

A long-standing suggestion is that cosmic rays can aid the formation of clouds (see reviews

by Ney 1959; Carslaw et al. 2002; Kirkby 2007). This would be a highly significant effect

because clouds modulate Earth’s energy balance by changing the albedo A and by

enhancing the infrared greenhouse trapping effect. The balance between these two com-

peting effects is dependent on the cloud altitude: For low clouds the albedo effect domi-

nates (such that more cloud is a cooling effect), whereas for high-altitude clouds the

greenhouse trapping effect dominates (so that more cloud gives warming). A great many

papers have been written about low-altitude global cloud cover arguing that it shows a

solar-cycle variation, consistent with GCR modulation of the growth of cloud condensation

nuclei (CCN) (Svensmark and Friis-Christensen 1997; Svensmark 2007; Marsh and

Svensmark 2000, 2003, 2004). These studies have been based on the available satellite data

after 1983, which give global coverage, and so still cover something less than three solar

cycles. Other studies find no significant effect (Sloan and Wolfendale 2008; Kernthaler

et al. 1999; Kristjánsson and Kristiansen 2000; Sun and Bradley 2002, 2004; Kulmala et al.

2010). A third set of studies find significant correlations but only in restricted regions

(Erlykin et al. 2010; Kristjánsson et al. 2008), whereas a fourth set report a solar-cycle

variation but find it to be more consistent with solar UV irradiance variability (de Jager and

Usoskin 2006; Erlykin et al. 2010; Udelhofen and Cess 2001). Voiculescu et al. (2006)

argue that both UV and GCRs have an effect. Harrison (2008) detected a weak 1.68-year

oscillation in the long (1947–1990) diffuse fraction data series from the Lerwick (mari-

time) station—an oscillation found in the open solar flux and GCR fluxes but not in the SSI

or TSI variations (Rouillard and Lockwood 2004). Hence, this supports a direct effect of

GCRs rather than irradiance changes. It is expected that any effect would be more sig-

nificant in clean maritime air where there is a shortage of CCNs for water vapour to

condense on, and air ions generated by GCRs may be more significant factor (Kazil et al.

2006; Laken et al. 2009).

The arguments against such direct cosmic ray-cloud connection have been: 1. Given the

atmospheric supersaturations, there is no established mechanism that can cause the effect.

2. The inter-calibrations involved in the composite cloud-cover data set used render it

unsuitable for this type of long-term variability analysis (e.g., Klein and Hartmann 1993).

3. The data sequences are too short and so the significance of the correlations is low. (For

example, Sun and Bradley (2002, 2004) show that the uniquely high cosmic ray-cloud-

cover correlation in the period 1983–1999 over the Atlantic Ocean is greatly weakened

when an extended data set is used.) 4. Periods of low geomagnetic field, particularly the

Laschamp event (Nöel and Tarling, 1975) which at 40 kyr ago is the most recent and well
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studied, gave enhanced GCR fluxes in the Earth’s atmosphere but did not influence climate

in the Greenland area (Beer 2006). Of these objections, only 4 argues that such a mech-

anism is not effective: 1–3 all argue that the evidence in its favour is inadequate. In relation

to 4, there is some evidence that the failure to see an effect of the Laschamp event (Wagner

et al. 2001) may have been a local characteristic of the climate in the Greenland area

(Christla et al. 2004). Other studies give indications of an influence of the geomagnetic

field on pre-industrial climate. Recent reports of associations between the main geomag-

netic field and climatic changes over the last three millennia (Haug et al. 2001; Gallet and

Genevey 2007 Gallet et al. 2005, 2006; Courtillot et al. 2007) would be significant, if they

survived robust null-hypothesis testing, because they would be via GCR effects and

unrelated to solar irradiance changes. These changes have also been linked to latitudinal

motions of the inter-tropical convergence zone (Haug et al. 2001). Harrison and Ste-

phenson (2006) found evidence for a small GCR effect on diffuse fraction measurements at

a variety of maritime UK meteorological stations (for 1951–2000) and Harrison et al.

(2011) have found the base of some type of clouds is lowered by higher cosmic ray fluxes.

As these are homogeneous sequences of simple measurements, this does counter objection

(2) to some extent; however, the effect was small.

In addition to the solar-cycle variation in GCRs, there are sudden decreases in GCR

fluxes over periods of a few days called Forbush decreases. These have been reported as

giving responses in cloud data, both ground-based (Veretenenko and Pudovkin 1997) and

from satellites (Svensmark et al. 2009), in ‘‘compositing’’ analyses (also called ‘‘super-

posed epoch’’ and ‘‘Chree’’ analysis). The problem with these studies (particularly if a

satellite data set is employed) is that there are very few large Forbush decreases, and the

results appear to be dominated by one or two events in the intervals of available satellite

data. This means that statistical significance is very low. The long delay of the putative

effect is also a major puzzle. Brown (2008) reports that 3% of cloud variability on short

timescales could be associated with GCRs, whereas Calogovic et al. (2010) find no

response at all. The potential importance of this effect is that there are long-term changes in

the open solar flux FS (Lockwood et al. 2009; Lockwood and Owens 2011) that yields the

long-term changes in GCRs (McCracken and Beer 2007; Muscheler et al. 2007; Steinhilber

et al. 2008) which could introduce long-term changes in climate if the mechanism was to

be sufficiently effective.

The best chance of answering objection (1) is the CLOUD experiment at CERN (Du-

plissy et al. 2010), which has just begun to study the ‘‘ion-aerosol clear-air’’ mechanism.

The first results have just been published (Kirkby et al. 2011). The results have some

fascinating new insights into effects in the boundary layer, but do not say much about the

growth of water droplets in low-altitude cloud in the troposphere. Through the influence of

sulphuric acid, ionisation was shown to enhance the rate of water droplet growth at the

temperatures characteristic of middle troposphere. However, the ion-induced aerosols only

grew to about 2 nm, and to grow into droplets large enough to influence incoming or

outgoing radiation to Earth, would be far too slow because there is not enough sulphuric

acid in the atmosphere (Pierce and Adams 2009). As yet, the experiment is not reproducing

the true mix of constituents in the mid-troposphere, so the results are highly provisional.

Other proposed mechanisms involving the atmospheric electric field have been proposed

(Harrison 2000) but have not yet been investigated.

The cloud-cosmic ray suggestion increasingly fails to match observations. The corre-

lation between the solar-cycle variation and global cloud-cover estimates has degraded
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rapidly in the more recent data (Gray et al. 2010). For each piece of evidence in its favour,

an equal or greater number of studies fail to find the effect. Only studies finding rather

subtle effects on cloud edges survive proper null-hypothesis testing. Lastly, we note that

GCR-cloud effects would have shown up in the multivariate fits of GMAST shown in

Figs. 1 and 2, which found only a weak solar response (indeed in these fits, the solar input

was even quantified using GCR fluxes). In addition, even if the GCR-cloud mechanism was

responsible for the effect that was seen, the global regression map (Fig. 4c) generates a

major issue. Larger GCR fluxes would have been expected near the poles, where geo-

magnetic shielding of GCRs is weaker and with no longitudinal effects (with the possible

exception of in the south Atlantic geomagnetic anomaly). Hence, additional effects, such

as spatial variations in aerosols, would have to be invoked to explain maps such as shown

in Fig. 4c.

9 The Future

We have no predictive models of the solar dynamo (see review by Weiss and Thompson

2009) and so can only make empirical analogue forecasts of future solar output changes.

From solar-induced variations of cosmogenic isotopes over the past 104 years, Lockwood

(2010) and Barnard et al. (2011) have deduced that there is an 8% chance that the Sun will

return to Maunder Minimum conditions within 50 years. The recent evolution of solar

cycle 24 indicates that the Sun may well be following such a trajectory (Owens et al. 2011).

Feulner and Rahmstorf (2010) and Jones et al. (2012) have used GCMs and EBMs to

predict that this will offset anthropogenically rising global temperatures by no more than

about 0.2�C in the year 2100, relative to what would happen if the solar output remained

constant. Similarly, Lean and Rind (2009) find that the solar decline would delay the

arrival at a given temperature level by no more than about 5 years. Thus, these predictions

show that continued solar decline will do little to alleviate anthropogenically driven global

warming. However, the decline should do much to end the debate about the fraction of

global warming that can be attributed to solar change. For the first time since about 1900,

long-term solar and anthropogenic trends are now in opposite directions. Non-robust fits

will fail sooner rather than later because of the change in solar behaviour. Thus, the next

few years will give us much better estimates of the solar contribution to both global and

regional climate change. For global temperature rise, there is every indication that these

new estimates will, if anything, be smaller that previous estimates. On the other hand, there

are indications that some regional climates will be more susceptible to solar changes

(Lockwood et al. 2011a, b). Understanding spectral irradiance variability and differenti-

ating ‘‘top-down’’ and ‘‘bottom-up’’ solar forcings will be needed as these will have very

different effects on the spatial patterns of the responses and will behave differently in

combination with other changes, such as sea ice loss. Key advances in this area will be

made in modelling, with higher resolution in time and space, better understanding of

numerical noise and of the relationship of natural climate variability to that in the model

behaviour, fewer parameterisations, better definition of the inputs forcings and inclusion of

more biological responses alongside the physical and chemical mechanisms.
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Bochnı́ček J, Hejda P (2005) The winter NAO pattern changes in association with solar and geomagnetic
activity. J Atmos Sol-Terr Phys 67:17–32. doi: 10.1016/j.jastp.2004.07.014

Broccoli AJ et al (2003) Twentieth-century temperature and precipitation trends in ensemble climate
simulations including natural and anthropogenic forcing. J Geophys Res 108(D24):4798. doi:10.1029/
2003JD003812

Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global
observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/
2005JD006548
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