Skip to main content
Log in

Coherent States and Modified de Broglie-Bohm Complex Quantum Trajectories

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper examines the nature of classical correspondence in the case of coherent states at the level of quantum trajectories. We first show that for a harmonic oscillator, the coherent state complex quantum trajectories and the complex classical trajectories are identical to each other. This congruence in the complex plane, not restricted to high quantum numbers alone, illustrates that the harmonic oscillator in a coherent state executes classical motion. The quantum trajectories we consider are those conceived in a modified de Broglie-Bohm scheme. Though quantum trajectory representations are widely discussed in recent years, identical classical and quantum trajectories for coherent states are obtained only in the present approach. We may note that this result for standard harmonic oscillator coherent states is not totally unexpected because of their holomorphic nature. The study is extended to coherent states of a particle in an infinite potential well and that in a symmetric Poschl-Teller potential by solving for the trajectories numerically. For the Gazeau-Klauder coherent state of the infinite potential well, almost identical classical and quantum trajectories are obtained whereas for the Poschl-Teller potential, though classical trajectories are not regained, a periodic motion results as t→∞. Similar features were found for the SUSY quantum mechanics-based coherent states of the Poschl-Teller potential too, but this time the pattern of complex trajectories is quite different from that of the previous case. Thus we find that the method is a potential tool in analyzing the properties of generalized coherent states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Broglie, L.: Ph.D. thesis, University of Paris (1924)

  2. de Broglie, L.: J. Phys. Radium 8, 225 (1927)

    Article  MATH  Google Scholar 

  3. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  4. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)

    Google Scholar 

  5. Holland, P.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  6. Carroll, R.: Quantum Theory, Deformation, and Integrability. North Holland, Amsterdam (2000)

    MATH  Google Scholar 

  7. Wyatt, R.E.: Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics. Springer, New York (2005)

    MATH  Google Scholar 

  8. Chattaraj, P.K. (ed.): Quantum Trajectories. CRC Press, Taylor & Francis, Boca Raton (2011)

    MATH  Google Scholar 

  9. Floyd, E.R.: Modified potential and Bohm’s quantum-mechanical potential. Phys. Rev. D 26, 1339 (1982)

    Article  ADS  Google Scholar 

  10. Faraggi, A., Matone, M.: Quantum mechanics from an equivalence principle. Phys. Lett. B 450, 34 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. John, M.V.: Modified de Broglie-Bohm approach to quantum mechanics. Found. Phys. Lett. 15, 329 (2002)

    Article  MathSciNet  Google Scholar 

  12. Yang, C.-D.: Quantum dynamics of hydrogen atom in complex space. Ann. Phys. 319, 399 (2005)

    Article  ADS  MATH  Google Scholar 

  13. Yang, C.-D.: Wave-particle duality in complex space. Ann. Phys. 319, 444 (2005)

    Article  ADS  MATH  Google Scholar 

  14. Yang, C.-D.: Modeling quantum harmonic oscillator in complex domain. Chaos Solitons Fractals 30, 342 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Goldfarb, Y., Degani, I., Tannor, D.J.: Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics. J. Chem. Phys. 125, 231103 (2006)

    Article  ADS  Google Scholar 

  16. Chou, C.-C., Wyatt, R.E.: Computational method for the quantum Hamilton-Jacobi equation: one-dimensional scattering problems. Phys. Rev. E 74, 066702 (2006)

    Article  ADS  Google Scholar 

  17. Chou, C.-C., Wyatt, R.E.: Computational method for the quantum Hamilton-Jacobi equation: bound states in one-dimension. J. Chem. Phys. 125, 174103 (2007)

    Article  ADS  Google Scholar 

  18. Sanz, A.S., Miret-Artes, S.: Aspects of nonlocality from a quantum trajectory perspective: a WKB approach to Bohmian mechanics. Chem. Phys. Lett. 445, 350 (2007)

    Article  ADS  Google Scholar 

  19. Sanz, A.S., Miret-Artes, S.: Comment on “Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics” [J. Chem. Phys. 125, 231103 (2006)]. J. Chem. Phys. 127, 197101 (2007)

    Article  ADS  Google Scholar 

  20. Goldfarb, Y., Degani, I., Tannor, D.J.: Response to “Comment on ‘Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics’ ” [J. Chem. Phys. 127, 197101 (2007)]. J. Chem. Phys. 127, 197102 (2007)

    Article  ADS  Google Scholar 

  21. John, M.V.: Probability and complex quantum trajectories. Ann. Phys. 324, 220 (2009)

    Article  ADS  MATH  Google Scholar 

  22. John, M.V.: Probability and complex quantum trajectories: finding the missing links. Ann. Phys. 325, 2132 (2010)

    Article  ADS  MATH  Google Scholar 

  23. Klauder, J.R., Skagerstam, B.: Coherent States—Applications in Physics and Mathematical Physics. World Scientific, Singapore (1985)

    MATH  Google Scholar 

  24. Ali, S.T., Antoine, J.-P., Gazeau, J.-P.: Coherent States, Wavelets and Their Generalizations. Springer, New York (2000)

    Book  MATH  Google Scholar 

  25. Bender, C.M., Boettcher, S., Meisinger, P.N.: PT-Symmetric quantum mechanics. J. Math. Phys. 40, 2201 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Nanayakkara, A.: Classical trajectories of 1D complex non-Hermitian Hamiltonian systems. J. Phys. A, Math. Gen. 37, 4321 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Bender, C.M., Chen, J.-H., Darg, D.W., Milton, K.A.: Classical trajectories for complex Hamiltonians. J. Phys. A, Math. Gen. 39, 4219 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Antoine, J.-P., Gazeau, J.-P., Monceau, P., Klauder, J.R., Penson, K.A.: Temporally stable coherent states for infinite well and Poschl-Teller potentials. J. Math. Phys. 42, 2349 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Bergeron, H., Gazeau, J.-P., Siegl, P., Youssef, A.: Semi-classical behavior of Poschl-Teller coherent states. Europhys. Lett. 92, 60003 (2010)

    Article  ADS  Google Scholar 

  30. Bergeron, H., Siegl, P., Youssef, A.: New SUSYQM coherent states for Poschl-Teller potentials: a detailed mathematical analysis. J. Phys. A, Math. Theor. 454, 244028 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  31. Rivers, R.J.: Path Integrals for (Complex) Classical and Quantum Mechanics. arXiv:1202.4117 (2012)

Download references

Acknowledgements

M.V.J. wishes to thank Professors N.D. Hari Dass and M. Raveendranadhan for discussions and the Chennai Mathematical Institute, Chennai, India for hospitality during a short visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncy V. John.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, M.V., Mathew, K. Coherent States and Modified de Broglie-Bohm Complex Quantum Trajectories. Found Phys 43, 859–871 (2013). https://doi.org/10.1007/s10701-013-9722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9722-8

Keywords

Navigation