Skip to main content
Log in

Practical Implementation of a Test of Event-Based Corpuscular Model as an Alternative to Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We describe in detail the first experimental test that distinguishes between an event-based corpuscular model of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through a Mach-Zehnder interferometer. The experimental results, obtained with a low-noise single-photon source, agree with the predictions of standard quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Though we subtracted dark counts in these figures, this does not affect our conclusions, because the processed data present the same behavior as raw data (not shown).

References

  1. Benatti, F., Fannes, M., Floreanini, R., Petritis, D. (eds.): Quantum Information, Computation and Cryptography: An Introductory Survey of Theory, Technology and Experiments. Springer, Berlin (2010)

    Google Scholar 

  2. Khrennikov, A.: arXiv:1210.2390 (2012)

  3. Khrennikov, A., Rosinger, E.E.: In: AIP Conf. Proc., vol. 1424 (2012)

    Google Scholar 

  4. Elze, H.T.: J. Phys. Conf. Ser. 361, 012004 (2012)

    Article  ADS  Google Scholar 

  5. Elze, H.T.: Phys. Rev. A 84, 052109 (2012)

    Article  ADS  Google Scholar 

  6. ’t Hooft, G.: arXiv:1112.1811 (2012)

  7. Blasone, M., Jizba, P., Scardigli, F.: J. Phys. Conf. Ser. 174, 012034 (2009).

    Article  ADS  Google Scholar 

  8. D’Ariano, G.M.: Adv. Sci. Lett. 17, 130 (2012)

    Article  Google Scholar 

  9. Genovese, M.: Phys. Rep. 413, 319 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. Buonomano, V.: In: Honig, W.M., et al. (eds.) Quantum Uncertainties: Recent and Future Experiments and Interpretations. NATO ASI Series B: Physics, vol. 162 (1986)

    Google Scholar 

  11. Durt, T.: Int. J. Mod. Phys. B 26, 1243005 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  12. Khrennikov, A.: Il Nuovo Cimento B 113, 751 (1998)

    ADS  Google Scholar 

  13. Dubischar, D., Gundlach, V.M., Steinkamp, O., Khrennikov, A.: Il Nuovo Cimento B 114, 373 (1999)

    ADS  Google Scholar 

  14. De Raedt, H., De Raedt, K., Michielsen, K.: J. Phys. Soc. Jpn. 74, 16 (2005)

    Article  Google Scholar 

  15. De Raedt, H., De Raedt, K., Michielsen, K.: Europhys. Lett. 69, 861 (2005)

    Article  ADS  Google Scholar 

  16. De Raedt, H., De Raedt, K., Michielsen, K.: Comput. Phys. Commun. 171, 19 (2005)

    Article  ADS  Google Scholar 

  17. Michielsen, K., De Raedt, K., De Raedt, H.: J. Comput. Theor. Nanosci. 2, 227 (2005)

    Article  Google Scholar 

  18. De Raedt, K., Keimpema, K., De Raedt, H., Michielsen, K., Miyashita, S.: Eur. Phys. J. B 53, 139 (2006)

    Article  ADS  Google Scholar 

  19. De Raedt, K., De Raedt, H., Michielsen, K.: Comput. Phys. Commun. 176, 642 (2007)

    Article  ADS  Google Scholar 

  20. De Raedt, H., De Raedt, K., Michielsen, K., Keimpema, K., Miyashita, S.S.: J. Phys. Soc. Jpn. 76, 104005 (2007)

    Article  ADS  Google Scholar 

  21. De Raedt, H., De Raedt, K., Michielsen, K., Keimpema, K., Miyashita, S.S.: J. Comput. Theor. Nanosci. 4, 957 (2007)

    Google Scholar 

  22. De Raedt, H., Michielsen, K., Miyashita, S.S., Keimpema, K.: Eur. Phys. J. B 58, 55 (2007)

    Article  ADS  Google Scholar 

  23. Zhao, S., De Raedt, H., Michielsen, K.: Found. Phys. 38, 322 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. Trieu, B., Michielsen, K., De Raedt, H.: Comput. Phys. Commun. 182, 726 (2011)

    Article  ADS  MATH  Google Scholar 

  25. Michielsen, K., Jin, F., De Raedt, H.: J. Comput. Theor. Nanosci. 8, 1052 (2011)

    Article  Google Scholar 

  26. Michielsen, K., Lippert, T., Richter, M., Barbara, B., Miyashita, S., De Raedt, H.: J. Phys. Soc. Jpn. 81, 034001 (2012)

    Article  ADS  Google Scholar 

  27. Bell, J.S.: Physics 1, 195 (1965)

    Google Scholar 

  28. Genovese, M.: Adv. Sci. Lett. 3, 249 (2010)

    Article  Google Scholar 

  29. Dechoum, K., Marshall, T.W., Santos, E.: J. Mod. Opt. 47, 1273 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  30. Khrennikov, A.: Adv. Sci. Lett. 2, 488 (2009)

    Article  Google Scholar 

  31. Santos, E.: Adv. Sci. Lett. 2, 475 (2009)

    Article  Google Scholar 

  32. Araujo, J., Cordovil, J., Croca, J.R., Moreira, R.N., Rica da Silva, A.: Adv. Sci. Lett. 2, 481 (2009)

    Article  Google Scholar 

  33. Brida, G., Genovese, M., Piacentini, F.: Eur. Phys. J. D 44, 577 (2007)

    Article  ADS  Google Scholar 

  34. Santos, E.: Phys. Lett. A 327, 33 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Santos, E.: Eur. Phys. J. D 42, 501 (2007)

    Article  ADS  Google Scholar 

  36. Garola, C., Sozzo, S.: Europhys. Lett. 86, 20009 (2009)

    Article  ADS  Google Scholar 

  37. Summhammer, J.: Il Nuovo Cimento B 103, 265 (1989)

    Article  ADS  Google Scholar 

  38. Rarity, J.G., Tapster, P.R., Jakeman, E.: Opt. Commun. 62, 201 (1987)

    Article  ADS  Google Scholar 

  39. Brida, G., Degiovanni, I.P., Genovese, M., Migdall, A., Piacentini, F., Polyakov, S.V., Berchera, I.R.: Opt. Express 19, 1484 (2011)

    Article  ADS  Google Scholar 

  40. Oxborrow, M., Sinclair, A.C.: Contemp. Phys. 46, 173 (2005)

    Article  ADS  Google Scholar 

  41. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Rev. Sci. Instrum. 82, 071101 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union on the basis of Decision No. 912/2009/EC (project IND06-MIQC), by MIUR FIRB RBFR10YQ3H (Lichis), RBFR10VZUG (Thermalskin) and RBFR10UAUV (Diamante), and by Compagnia di San Paolo. S.V.P. and A.M. acknowledge partial support from the NSF Physics Frontier Center at the Joint Quantum Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo P. Degiovanni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyakov, S.V., Piacentini, F., Traina, P. et al. Practical Implementation of a Test of Event-Based Corpuscular Model as an Alternative to Quantum Mechanics. Found Phys 43, 913–922 (2013). https://doi.org/10.1007/s10701-013-9718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9718-4

Keywords

Navigation