Skip to main content
Log in

Super-Luminal Effects for Finsler Branes as a Way to Preserve the Paradigm of Relativity Theories

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Using Finsler brane solutions [see details and methods in: S. Vacaru, Class. Quant. Grav. 28:215001, 2011], we show that neutrinos may surpass the speed of light in vacuum which can be explained by trapping effects from gravity theories on eight dimensional (co) tangent bundles on Lorentzian manifolds to spacetimes in general and special relativity. In nonholonomic variables, the bulk gravity is described by Finsler modifications depending on velocity/momentum coordinates. Possible super-luminal phenomena are determined by the width of locally anisotropic brane (spacetime) and induced by generating functions and integration functions and constants in coefficients of metrics and nonlinear connections. We conclude that Finsler brane gravity trapping mechanism may explain neutrino super-luminal effects and almost preserve the paradigm of Einstein relativity as the standard one for particle physics and gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. By x=(x i) we denote local coordinates on V (indices i,j,k… and a,b,c… are coordinate or abstract ones which may take values 1, 2, 3, 4).

  2. Various nonhomogeneous generating functions (for instance, regular Lagrangians) and with other type homogeneity are also considered in modern literature.

  3. We consider that readers are familiar with basic concepts and constructions for the geometry of Lorentz manifolds and Finsler spaces; in this letter, we can not provide, explain and motivate all results and methods.

  4. For simplicity, we shall consider solutions with trapping on velocity type coordinate y 5, but the constructions can be performed in a similar for other fiber variables.

  5. In our works on GR and noncommutative, metric–affine, supersymmetric, string, brane, generalized Finsler etc extensions [3138, 5557], we provided examples when the fundamental equations (4), split into certain sub-systems of nonlinear partial differential equations (NPDE) which can be integrated in very general forms.

References

  1. OPERA Collaboration: arXiv:1109.4897

  2. Amelino-Camelia, G., Gubitosi, G., Loret, N., Mercati, F., Rosati, G., Lipari, P.: Int. J. Mod. Phys. D 20, 2623 (2011)

    Article  ADS  MATH  Google Scholar 

  3. Fargion, D., D’Armeniento, D.: J. Phys. G, Nucl. Part. Phys. 39, 085002 (2012)

    Article  ADS  Google Scholar 

  4. Ciborowski, J., Rembielinski, J.: arXiv:1109.5599

  5. Svozil, K.: arXiv:1109.5411

  6. Alexandre, J.: Int. J. Mod. Phys. A 26, 4523 (2011)

    Article  ADS  MATH  Google Scholar 

  7. Klinkhamer, F.R.: arXiv:1109.5671

  8. Giudice, G.F., Sibiryakov, S., Strumia, A.: arXiv:1109.5682

  9. Dvali, G., Vikman, A.: J. High Energy Phys. 02, 134 (2012)

    Article  ADS  Google Scholar 

  10. Gubser, S.S.: arXiv:1109.5687

  11. Wang, P., Wu, H., Yang, H.: arXiv:1110.0449

  12. Franklin, J.: arXiv:1110.0234

  13. Alexandre, J., Ellis, J., Mavromatos, N.: Phys. Lett. B 706, 456 (2012). arXiv:1109.6296

    Article  ADS  Google Scholar 

  14. Castro, C.: Found. Phys. 42, 1135 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Vacaru, S.: Ann. Phys. 256, 39 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Vacaru, S.: Nucl. Phys. B 434, 590 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  17. Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V.: Int. J. Mod. Phys. A 12, 607 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Perlick, V.: Gen. Relativ. Gravit. 38, 365 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Girelli, F., Liberati, S., Sindoni, L.: Phys. Rev. D 75, 064015 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  20. Stavrinos, P.C., Kouretsis, A.P., Stathakopoulos, M.: Gen. Relativ. Gravit. 40, 1403 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Kouretsis, A.P., Stathakopoulos, M., Stavrinos, P.C.: Phys. Rev. D 79, 104011 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. Vacaru, S.: J. Math. Phys. 50, 073503 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. Vacaru, S.: Gen. Relativ. Gravit. 44, 1015 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Schuller, F.P., Witte, C., Wohlfarth, M.N.R.: Ann. Phys. 325, 1853 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Mavromatos, N.E., Sarkar, S., Vergou, A.: Phys. Lett. B 696, 300 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  26. Castro, C.: Int. J. Mod. Phys. A 26, 3653 (2011)

    Article  ADS  MATH  Google Scholar 

  27. Vacaru, S.: Class. Quantum Gravity 27, 105003 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  28. Lämmerzahl, C., Lorek, D., Dittus, H.: Gen. Relativ. Gravit. 41, 1345 (2009)

    Article  ADS  MATH  Google Scholar 

  29. Pfeifer, C., Wohlfarth, M.N.R.: Phys. Lett. B 712, 284 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  30. Pfeifer, C., Wohlfarth, M.N.R.: Phys. Rev. D 84, 044039 (2011)

    Article  ADS  Google Scholar 

  31. Vacaru, S.: Class. Quantum Gravity 28, 215001 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  32. Vacaru, S.: J. Phys. Conf. Ser. 314, 012069 (2011)

    Article  ADS  Google Scholar 

  33. Vacaru, S.: Int. J. Mod. Phys. D 21, 1250072 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  34. Vacaru, S.: Int. J. Geom. Methods Mod. Phys. 5, 473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vacaru, S.: Int. J. Geom. Methods Mod. Phys. 4, 1285 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vacaru, S.: Int. J. Geom. Methods Mod. Phys. 8, 9 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vacaru, S.: Int. J. Theor. Phys. 49, 884 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vacaru, S.: arXiv:1108.2022

  39. Vacaru, S.: Phys. Lett. B 690, 224 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  40. Vacaru, S.: J. Geom. Phys. 60, 1289 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Vacaru, S.: Int. J. Geom. Methods Mod. Phys. 6, 873 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vacaru, S.: Int. J. Geom. Methods Mod. Phys. 7, 713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gogberashvili, M.: Int. J. Mod. Phys. D 11, 1635 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  44. Gogberashvili, M.: Europhys. Lett. 49, 396 (2000)

    Article  ADS  Google Scholar 

  45. Gogberashvili, M.: Gravitational trapping for extended extra dimension. Int. J. Mod. Phys. D 11, 1639–1642 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Vacaru, S., Singleton, D.: Class. Quantum Gravity 19, 2793 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Midodashvili, P.: arXiv:hep-th/0308051

  50. Gogberashvili, M., Midodashvili, P.: Europhys. Lett. 61, 308 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  51. Gogberashvili, M., Singleton, D.: Phys. Rev. D 69, 026004 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  52. Singleton, D.: Phys. Rev. D 70, 065013 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  53. Colley, A.A., Hervik, S.: Class. Quantum Gravity 21, 5759 (2004)

    Article  ADS  Google Scholar 

  54. Boehmer, C.G., De Risi, G., Harko, T., Lobo, F.S.N.: Class. Quantum Gravity 27, 18501 (2010)

    Google Scholar 

  55. Vacaru, S., Popa, F.C.: Class. Quantum Gravity 18, 4921 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Vacaru, S., Singleton, D., Botan, V., Dotenco, D.: Phys. Lett. B 519, 249 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Vacaru, S., Singleton, D.: Class. Quantum Gravity 19, 3583 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Bogoslovsky, G.Y.: Nuovo Cimento B 77, 181 (1983)

    Article  ADS  Google Scholar 

  59. Asanov, G.S.: Finsler Geometry, Relativity and Gauge Theories. D. Reidel, Dordrecht (1985)

    Book  MATH  Google Scholar 

  60. Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications. FTPH, vol. 59. Kluwer Academic, Dordrecht, Boston, London (1994)

    Book  MATH  Google Scholar 

  61. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann–Finsler Geometry. Springer, New York (2000)

    Book  MATH  Google Scholar 

  62. Bogoslovsky, G., Goenner, H.F.: Phys. Lett. A 323, 40 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Gibbons, G.W., Gomis, J., Pope, C.N.: Phys. Rev. D 76, 081701 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  64. Adamson, P., et al. (MINOS Collaboration): Phys. Rev. D 76, 072005 (2007)

    Article  ADS  Google Scholar 

  65. Kalbfleisch, G.R., Baggett, N., Fowler, E.C., Alspector, J.: Phys. Rev. Lett. 43, 1361 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research for this paper is partially supported by the Program IDEI, PN-II-ID-PCE-2011-3-0256. I’m grateful for former collaboration and/or important discussions/correspondence relevant to this paper to P. Stavrinos, N. Mavromatos, C. Lämmerzahl, V. Perlick, S. Odintsov, and C. Castro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiu I. Vacaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacaru, S.I. Super-Luminal Effects for Finsler Branes as a Way to Preserve the Paradigm of Relativity Theories. Found Phys 43, 719–732 (2013). https://doi.org/10.1007/s10701-013-9711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9711-y

Keywords

Navigation