Skip to main content
Log in

Differential host defense against multiple parasites in ants

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Host–parasite interactions are ideal systems for the study of coevolutionary processes. Although infections with multiple parasite species are presumably common in nature, most studies focus on the interactions of a single host and a single parasite. To the best of our knowledge, we present here the first study on the dependency of parasite virulence and host resistance in a multiple parasite system. We evaluated whether the strength of host defense depends on the potential fitness cost of parasites in a system of two Southeast Asian army ant hosts and five parasitic staphylinid beetle species. The potential fitness costs of the parasites were evaluated by their predation behavior on host larvae in isolation experiments. The host defense was assessed by the ants’ aggressiveness towards parasitic beetle species in behavioral studies. We found clear differences among the beetle species in both host–parasite interactions. Particular beetle species attacked and killed the host larvae, while others did not. Importantly, the ants’ aggressiveness was significantly elevated against predatory beetle species, while non-predatory beetle species received almost no aggression. As a consequence of this defensive behavior, less costly parasites are more likely to achieve high levels of integration in the ant society. We conclude that the selection pressure on the host to evolve counter-defenses is higher for costly parasites and, thus, a hierarchical host defense strategy has evolved that depends on the parasites’ impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426

    Article  CAS  Google Scholar 

  • Akre RD, Rettenmeyer CW (1966) Behavior of Staphylinidae associated with army ants (Formicidae: Ecitoninae). J Kans Entomol Soc 39(4):745–782

    Google Scholar 

  • Alizon S, Hurford A, Mideo N et al (2009) Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol 22(2):245–259

    Article  CAS  PubMed  Google Scholar 

  • Allander K, Schmid-Hempel P (2000) Immune defence reaction in bumble-bee workers after a previous challenge and parasitic coinfection. Funct Ecol 14(6):711–717

    Article  Google Scholar 

  • Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    Article  CAS  PubMed  Google Scholar 

  • Bandilla M, Valtonen ET, Suomalainen LR et al (2006) A link between ectoparasite infection and susceptibility to bacterial disease in rainbow trout. Int J Parasitol 36(9):987–991

    Article  CAS  PubMed  Google Scholar 

  • Barbero F, Thomas JA, Bonelli S et al (2009) Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science 323:782–785

    Article  CAS  PubMed  Google Scholar 

  • Barker DE, Cone DK, Burt MDB (2002) Trichodina murmanica (Ciliophora) and Gyrodactylus pleuronecti (Monogenea) parasitizing hatchery-reared winter flounder, Pseudopleuronectes americanus (Walbaum): effects on host growth and assessment of parasite interaction. J Fish Dis 25(2):81–89

    Article  Google Scholar 

  • Bell AS, De Roode JC, Sim D et al (2006) Within-host competition in genetically diverse malaria infections: parasite virulence and competitive success. Evolution 60(7):1358–1371

    PubMed  Google Scholar 

  • Boomsma JJ, Schmid-Hempel P, Hughes WHO (2005) Life histories and parasite pressure across the major groups of social insects. In: Fellowes MDE, Holloway GJ, Rolff J (eds) Insect evolutionary ecology: proceedings of the royal entomological society’s 22nd symposium. CABI, Wallingford, pp 139–176

  • Bordes F, Morand S (2009) Coevolution between multiple helminth infestations and basal immune investment in mammals: cumulative effects of polyparasitism? Parasitol Res 106:33–37

    Article  PubMed  Google Scholar 

  • Bremermann HJ, Pickering J (1983) A game-theoretical model of parasite virulence. J Theor Biol 100(3):411–426

    Article  CAS  PubMed  Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4(3):277–287

    Article  Google Scholar 

  • Brown SP, Hochberg ME, Grenfell BT (2002) Does multiple infection select for raised virulence? Trends Microbiol 10(9):401–405

    Article  CAS  PubMed  Google Scholar 

  • Clayton DH, Lee PL, Tompkins DM et al (1999) Reciprocal natural selection on host–parasite phenotypes. Am Nat 154(3):261–270

    Article  PubMed  Google Scholar 

  • Combes C (2005) The art of being a parasite. The University of Chicago Press, Chicago

    Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B 205:489–511

    Article  CAS  PubMed  Google Scholar 

  • de Meeûs T, Renaud F (2002) Parasites within the new phylogeny of eukaryotes. Trends Parasitol 18:6

    Google Scholar 

  • Deboutteville CD (1948) Recherches sur les Collemboles term-itophiles et myrmecophiles (ecologie, ethologie, systematique). Arch Zool Exptl Et Gen 85(5):261–425

    Google Scholar 

  • Delves PJ, Martin SJ, Burton DR, Roitt IM (2006) Roitt’s essential immunology. Blackwell publishing, Oxford

    Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154

    Article  CAS  Google Scholar 

  • Disney RHL, Lizon à l’Allemand S, von Beeren C et al (2009) A new genus and new species of scuttle flies (Diptera: Phoridae) from colonies of ants (Hymenoptera: Formicidae) in Malaysia. Sociobiology 53(1):1–12

    Google Scholar 

  • Frank SA (1996) Models of parasite virulence. Q Rev Biol 71(1):37–78

    Article  CAS  PubMed  Google Scholar 

  • Gotwald WH Jr (1995) Army ants: the biology of social predation. Cornell University Press, Ithaca

    Google Scholar 

  • Hart BL (1990) Behavioral adaptations to pathogens and parasites: five strategies. Neurosci Biobehav Rev 14:273–294

    Article  CAS  PubMed  Google Scholar 

  • Hechinger RF, Lafferty KD, Mancini FT et al (2009) How large is the hand in the puppet? Ecological and evolutionary factors affecting body mass of 15 trematode parasitic castrators in their snail host. Evol Ecol 23(5):651–667

    Article  Google Scholar 

  • Hefetz A (2007) The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)—interplay of colony odor uniformity and odor idiosyncrasy. A review. Myrmecol News 10:59–68

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  CAS  PubMed  Google Scholar 

  • Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23(12):672–677

    Article  PubMed  Google Scholar 

  • Kistner DH (1975) Myrmecophilous Staphylinidae associated with Leptogenys Roger (Coleoptera; Hymenoptera, Formicidae). Sociobiology 1:1–19

    Google Scholar 

  • Kistner DH (1979) Social and evolutionary significance of social insect symbionts. In: Hermann HR (ed) Social insects. Academic Press, New York, pp 339–413

    Google Scholar 

  • Kistner DH (1989) New genera and species of Aleocharinae associated with ants of the genus Leptogenys and their relationships (Coleoptera: Staphylinidae; Hymenoptera, Formicidae). Sociobiology 15:299–323

    Google Scholar 

  • Kistner DH, Witte V, Maschwitz U (2003) A new species of Trachydonia (Coleoptera: Staphylinidae, Aleocharinae) from Malaysia with some notes on its behavior as a guest of Leptogenys (Hymenoptera: Formicidae). Sociobiology 42:381–389

    Google Scholar 

  • Kistner DH, von Beeren C, Witte V (2008) Redescription of the generitype of Trachydonia and a new host record for Maschwitzia ulrichi (Coleoptera: Staphylinidae). Sociobiology 52(3):497–524

    Google Scholar 

  • Kronauer DJC (2009) Recent advances in army ant biology (Hymenoptera: Formicidae). Myrmecol News 12:51–65

    Google Scholar 

  • Lenoir A, D’Ettorre P, Errard C et al (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    Article  CAS  PubMed  Google Scholar 

  • Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461(7261):254–257

    Article  CAS  PubMed  Google Scholar 

  • Martens K, Schön I (2000) Parasites, predators and the Red Queen. Trends Ecol Evol 15(10):392–393

    Article  PubMed  Google Scholar 

  • Maruyama M, von Beeren C, Rosli H (in press a) Myrmecophilous aleocharine rove beetles (Coleoptera: Staphylinidae) associated with Leptogenys Roger, 1861 (Hymenoptera: Formicidae) I. Review of three genera associated with L. distinguenda (Emery, 1887) and L. mutabilis (Smith,1861). Zookeys

  • Maruyama M, von Beeren C, Witte V (in press b) Aleocharine rove beetles (Coleoptera: Staphylinidae) associated with Leptogenys Roger, 1861 (Hymenoptera: Formicidae) II. Two new genera and two new species associated with L. borneensis Wheeler, 1919. Zookeys

  • Maschwitz U, Steghaus-Kovac S (1991) Individualismus versus Kooperation: gegensätzliche Jagd- und Rekrutierungsstrategien bei tropischen Ponerinen (Hymenoptera: Formicidae). Naturwissenschaften 78:103–113

    Article  Google Scholar 

  • May RM, Nowak MA (1995) Coinfection and the evolution of parasite virulence. Proc R Soc Lond B 261(1361):209–215

    Article  CAS  Google Scholar 

  • Møller AP, Rósza L (2005) Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts. Oecologia 142:169–176

    Article  PubMed  Google Scholar 

  • Moore J (2002) Parasites and the behavior of animals. Oxford University Press, New York

    Google Scholar 

  • Paulian R (1948) Observations sur les Coléoptères commensaux d’Anomma nigricans en Côte d”Ivoire. Ann Sci Nat Zool 10:79–102

    Google Scholar 

  • Perlman SJ, Jaenike J (2001) Competitive interactions and persistence of two nematode species that parasitize Drosophila recens. Ecol Lett 4(6):577–584

    Article  Google Scholar 

  • Petney TN, Andrews RH (1998) Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol 28(3):377–393

    Article  CAS  PubMed  Google Scholar 

  • Pierce NE, Braby MF, Heath A et al (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771

    Article  CAS  PubMed  Google Scholar 

  • Read AF, Taylor LH (2001) The ecology of genetically diverse infections. Science 292(5519):1099–1102

    Article  CAS  PubMed  Google Scholar 

  • Rumbaugh KP, Diggle SP, Watters CM et al (2009) Quorum sensing and the social evolution of bacterial virulence. Curr Biol 19(4):341–345

    Article  CAS  PubMed  Google Scholar 

  • Rutrecht ST, Brown MJF (2008) The life-history impact and implications of multiple parasites for bumble bee queens. Int J Parasitol 38:799–808

    Article  PubMed  Google Scholar 

  • Sachs J, Mueller UG, Wilcox TP et al (2003) The evolution of cooperation. Q Rev Biol 79:136–160

    Google Scholar 

  • Schjorring S, Koella JC (2003) Sub-lethal effects of pathogens can lead to the evolution of lower virulence in multiple infections. Proc R Soc Lond B 270(1511):189–193

    Article  Google Scholar 

  • Schmid-Hempel P (1988) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Seevers CH (1965) The systematics, evolution and zoogeography of staphylinid beetles associated with army ants (Coleoptera, Staphylinidae). Fieldiana Zool 47(2):139–351

    Google Scholar 

  • Steghaus-Kovac S (1994) Wanderjäger im Regenwald-Lebensstrategien im Vergleich: Ökologie und Verhalten südostasiatischer Ameisenarten der Gattung Leptogenys (Hymenoptera: Formicidae: Ponerinae). Dissertation, Johann Wolfgang Goethe Universität, Frankfurt

  • Thayer MK (2005) 11. Staphylinoidea. 11.7. Staphylinidae Latreille, 1802. In: Kristensen NP, Beutel RG (eds) Handbook of zoology vol IV, part 2. Arthropoda: Insecta. De Gruyter, Berlin, pp 296–344

    Google Scholar 

  • Thomas JA, Wardlaw JC (1992) The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91:101–109

    Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Turner PE, Chao L (1999) Prisoner’s dilemma in an RNA virus. Nature 398(6726):441–443

    Article  CAS  PubMed  Google Scholar 

  • Van Baalen M, Sabelis MW (1995) The dynamics of multiple infection and the evolution of virulence. Am Nat 146(6):881–910

    Article  Google Scholar 

  • Wasmann E (1886) Über die Lebensweise einiger Ameisengäste. I Dtsch Entomol Z 30:49–66

    Google Scholar 

  • Wasmann E (1895) Die Ameisen-und Termitengäste von Brasilien. I. Theil. Mit einem Anhange von Dr. August Forel. Verh K K Zool Bot Ges Wien 45:137–179

    Google Scholar 

  • Witte V (2001) Organisation und Steuerung des Treiberameisenverhaltens bei südostasiatischen Ponerinen der Gattung Leptogenys. Dissertation, Johann Wolfgang Goethe Universität, Frankfurt

  • Witte V, Maschwitz U (2002) Coordination of raiding and emigration in the ponerine army ant Leptogenys distinguenda (Hymenoptera: Formicidae: Ponerinae): a signal analysis. J Insect Behav 15:195–217

    Article  Google Scholar 

  • Witte V, Leingärtner A, Sabaß L et al (2008) Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim Behav 76:1477–1486

    Article  Google Scholar 

  • Witte V, Foitzik S, Hashim R et al (2009) Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda. J Chem Ecol 35:355–367

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the behavioral ecology group at the LMU Munich and two anonymous reviewers for helpful comments on the manuscript. Many thanks are also due to Sofia Lizon à l’Allemand, Stefan Huber, Max Kölbl and Deborah Schweinfest for their assistance in the field. We are grateful for financial support from the DFG (Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Witte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Beeren, C., Maruyama, M., Hashim, R. et al. Differential host defense against multiple parasites in ants. Evol Ecol 25, 259–276 (2011). https://doi.org/10.1007/s10682-010-9420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-010-9420-3

Keywords

Navigation