Skip to main content
Log in

Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A linear elastic second gradient orthotropic two-dimensional solid that is invariant under \(90^{\circ }\) rotation and for mirror transformation is considered. Such anisotropy is the most general for pantographic structures that are composed of two identical orthogonal families of fibers. It is well known in the literature that the corresponding strain energy depends on nine constitutive parameters: three parameters related to the first gradient part of the strain energy and six parameters related to the second gradient part of the strain energy. In this paper, analytical solutions for simple problems, which are here referred to the heavy sheet, to the nonconventional bending, and to the trapezoidal cases, are developed and presented. On the basis of such analytical solutions, gedanken experiments were developed in such a way that the whole set of the nine constitutive parameters is completely characterized in terms of the materials that the fibers are made of (i.e., of the Young’s modulus of the fiber materials), of their cross sections (i.e., of the area and of the moment of inertia of the fiber cross sections), and of the distance between the nearest pivots. On the basis of these considerations, a remarkable form of the strain energy is derived in terms of the displacement fields that closely resembles the strain energy of simple Euler beams. Numerical simulations confirm the validity of the presented results. Classic bone-shaped deformations are derived in standard bias numerical tests and the presence of a floppy mode is also made numerically evident in the present continuum model. Finally, we also show that the largeness of the boundary layer depends on the moment of inertia of the fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. dell’Isola F, Lekszycki T, Pawlikowski M, Grygoruk R, Greco L (2015) Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z Angew Math Phys 66(6):3473–3498

    Article  MathSciNet  MATH  Google Scholar 

  2. Seppecher P, Alibert J-J, dell’Isola F (2011) Linear elastic trusses leading to continua with exotic mechanical interactions. J Phys Conf Ser 319(1):1–13

    Google Scholar 

  3. Naumenko K, Eremeyev VA (2014) A layer-wise theory for laminated glass and photovoltaic panels. Compos Struct 112(1):283–291

    Article  Google Scholar 

  4. Rosi G, Giorgio I, Eremeyev VA (2013) Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Z Angew Math Mech (ZAMM) 93(12):914–927

    Article  MathSciNet  Google Scholar 

  5. Steigmann DJ, Pipkin AC (1989) Wrinkling of pressurized membranes. J Appl Mech Trans ASME 56(3):624–628

    Article  MATH  Google Scholar 

  6. Steigmann DJ, Pipkin AC (1989) Finite deformations of wrinkled membranes. Q J Mech Appl Math 42(3):427–440

    Article  MathSciNet  MATH  Google Scholar 

  7. Steigmann DJ, Pipkin AC (1989) Axisymmetric tension fields. Z Angew Math Phys (ZAMP) 40(4):526–542

    Article  MathSciNet  MATH  Google Scholar 

  8. Bo P, Wang W (2007) Geodesic-controlled developable surfaces for modeling paper bending. Comput Graph Forum 26(3):365–374

    Article  Google Scholar 

  9. Garay ÓJ, Tazawa Y (2015) Extremal curves for weighted elastic energy in surfaces of 3-space forms. Appl Math Comput 251:349–362

    Article  MathSciNet  MATH  Google Scholar 

  10. Steigmann DJ, dell’Isola F (2015) Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech Sin 31(3):373–382

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Luongo A, D’Annibale F (2012) Bifurcation analysis of damped visco-elastic planar beams under simultaneous gravitational and follower forces. Int J Mod Phys B 26(25):art. no. 1246015

  12. Rizzi NL, Varano V (2011) The effects of warping on the postbuckling behaviour of thin-walled structures. Thin-Walled Struct 49(9):1091–1097

    Article  Google Scholar 

  13. Ruta GC, Varano V, Pignataro M, Rizzi NL (2008) A beam model for the flexural-torsional buckling of thin-walled members with some applications. Thin-Walled Struct 46(7):816–822

    Article  Google Scholar 

  14. Rizzi NL, Varano V, Gabriele S (2013) Initial postbuckling behavior of thin-walled frames under mode interaction. Thin-Walled Struct 68:124–134

    Article  Google Scholar 

  15. AminPour H, Rizzi N (2016) A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math Mech Solids 21(2):168–181

    Article  MathSciNet  MATH  Google Scholar 

  16. Gabriele S, Rizzi N, Varano V (2012) On the imperfection sensitivity of thin-walled frames. In: Civil-Comp proceedings, proceedings of the 11th international conference on computational structures technology, Paper 15

  17. Goda I, Rahouadj R, Ganghoffer J-F (2013) Size dependent static and dynamic behavior of trabecular bone based on micromechanical models of the trabecular architecture. Int J Eng Sci 72:53–77

    Article  Google Scholar 

  18. Rinaldi A, Mastilovic S (2014) The Krajcinovic approach to model size dependent fracture in quasi-brittle solids. Mech Mater 71:21–33

    Article  Google Scholar 

  19. Sansour C, Skatulla S (2009) A strain gradient generalized continuum approach for modelling elastic scale effects. Comput Methods Appl Mech Eng 198(15):1401–1412

    Article  ADS  MATH  Google Scholar 

  20. Neff P, Jeong J, Ramézani H (2009) Subgrid interaction and micro-randomness—novel invariance requirements in infinitesimal gradient elasticity. Int J Solids Struct 46(25):4261–4276

    Article  MATH  Google Scholar 

  21. Baraldi D, Reccia E, Cazzani A, Cecchi A (2013) Comparative analysis of numerical discrete and finite element models: the case of in-plane loaded periodic brickwork. Composites 4(4):319–344

    Google Scholar 

  22. Bilotta A, Turco E (2009) A numerical study on the solution of the Cauchy problem in elasticity. Int J Solids Struct 46(25–26):4451–4477

    Article  MATH  Google Scholar 

  23. Cazzani A, Ruge P (2012) Numerical aspects of coupling strongly frequency-dependent soil-foundation models with structural finite elements in the time-domain. Soil Dyn Earthq Eng 37:56–72

    Article  Google Scholar 

  24. Cesarano C, Assante D (2014) A note on generalized Bessel functions. Int J Math Models Methods Appl Sci 8(1):38–42

    Google Scholar 

  25. Della Corte A, Battista A, dell’Isola F (2016) Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int J Non-Linear Mech 80:209–220

  26. Garusi E, Tralli A, Cazzani A (2004) An unsymmetric stress formulation for Reissner–Mindlin plates: a simple and locking-free rectangular element. Int J Comput Eng Sci 5(3):589–618

    Article  Google Scholar 

  27. Greco L, Cuomo M (2014) Consistent tangent operator for an exact Kirchhoff rod model. Contin Mech Thermodyn 25:861–877

    MathSciNet  MATH  Google Scholar 

  28. Greco L, Cuomo M (2014) An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput Methods Appl Mech Eng 269:173–197

    Article  ADS  MATH  Google Scholar 

  29. Selvadurai APS, Nguyen TS (1993) Finite element modelling of consolidation of fractured porous media. In: Canadian geotechnical conference, pp 361–370

  30. Terravecchia S, Panzeca T, Polizzotto C (2014) Strain gradient elasticity within the symmetric BEM formulation. Fract Struct Integr 29:61–73

    Google Scholar 

  31. dell’Isola F, Andreaus U, Placidi L (2015) At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola, Mechanics and Mathematics of Solids (MMS) 20:887–928

    MATH  Google Scholar 

  32. Alibert J-J, Corte AD (2015) Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z Angew Math Phys 66(5):2855–2870

    Article  MathSciNet  MATH  Google Scholar 

  33. Cecchi A, Rizzi NL (2001) Heterogeneous elastic solids: a mixed homogenization-rigidification technique. Int J Solids Struct 38(1):29–36

    Article  MathSciNet  MATH  Google Scholar 

  34. dell’Isola F, Seppecher P (2011) Commentary about the paper Hypertractions and hyperstresses convey the same mechanical information. Continuum Mec. Thermodyn. 22:163-176 by Prof. Podio Guidugli and Prof. Vianello and some related papers on higher gradient theories. Contin Mech Thermodyn 23(5):473–478

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Misra A, Singh V (2015) Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Contin Mech Thermodyn 27(4):787–817

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Altenbach H, Eremeev VA, Morozov NF (2010) On equations of the linear theory of shells with surface stresses taken into account. Mech Solids 45(3):331–342

    Article  ADS  Google Scholar 

  37. Cuomo M, Contrafatto L, Greco L (2014) A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 80:173–188

    Article  MathSciNet  Google Scholar 

  38. D’Annibale F, Luongo A (2013) A damage constitutive model for sliding friction coupled to wear. Contin Mech Thermodyn 25(2–4):503–522

    Article  ADS  MATH  Google Scholar 

  39. Placidi L (2016) A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin Mech Thermodyn 28:119–137

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Placidi L (2015) A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin Mech Thermodyn 27:623–638

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Roveri N, Carcaterra A, Akay A (2009) Vibration absorption using non-dissipative complex attachments with impacts and parametric stiffness. J Acoust Soc Am 126(5):2306–2314

    Article  ADS  Google Scholar 

  42. Yang Y, Ching WY, Misra A (2011) Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J Nanomech Micromech 1(2):60–71

    Article  Google Scholar 

  43. Dos Reis F, Ganghoffer JF (2012) Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput Struct 112–113:354–363

    Article  Google Scholar 

  44. Goda I, Assidi M, Ganghoffer JF (2014) A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech Model Mechanobiol 13(1):53–83

    Article  Google Scholar 

  45. Madeo A, Neff P, Ghiba I-D, Placidi L, Rosi G (2015) Band gaps in the relaxed linear micromorphic continuum. J Appl Math Mech (Z Angew Math Mech) 95:880–887

    Article  MathSciNet  MATH  Google Scholar 

  46. Piccardo G, Ranzi G, Luongo A (2014) A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math Mech Solids 19(8):900–924

    Article  MathSciNet  MATH  Google Scholar 

  47. Mindlin RD (1964) Micro-structure in linear elasticity. Department of Civil Engineering, Columbia University, New York

    MATH  Google Scholar 

  48. dell’Isola F, Madeo A, Placidi L (2012) Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. J Appl Math Mech (Z Angew Math Mech) 92(1):52–71

    Article  MathSciNet  MATH  Google Scholar 

  49. dell’Isola F, Seppecher P, Della Corte A (2015) The postulations à la D’ Alembert and à la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc R Soc Lond A 471(2183):20150415

    Article  ADS  MathSciNet  Google Scholar 

  50. Ferretti M, Madeo A, dell’Isola F, Boisse P (2014) Modelling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory. Z Angew Math Phys (ZAMP) 65(3):587–612

    Article  MathSciNet  MATH  Google Scholar 

  51. Madeo A, dell’Isola F, Darve F (2013) A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J Mech Phys Solids 61(11):2196–2211

    Article  ADS  MathSciNet  Google Scholar 

  52. dell’Isola F, Gouin H, Seppecher P (1995) Radius and surface tension of microscopic bubbles by second gradient theory. Comptes Rendus Acad Sci Ser IIb Mecc Phys Chim Astron 320(6):211–216

    MATH  Google Scholar 

  53. dell’Isola F, Gouin H, Rotoli G (1996) Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations. Eur J Mech B 15(4):545–568

    MATH  Google Scholar 

  54. dell’Isola F, Rotoli G (1995) Validity of Laplace formula and dependence of surface tension on curvature in second gradient fluids. Mech Res Commun 22(5):485–490

    Article  MATH  Google Scholar 

  55. dell’Isola F, Sciarra G, Vidoli S (2009) Generalized Hooke’s law for isotropic second gradient materials. R Soc Lond 465(107):2177–2196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. dell’Isola F, Seppecher P (1997) Edge contact forces and quasi-balanced power. Meccanica 32(1):33–52

    Article  MathSciNet  MATH  Google Scholar 

  57. dell’Isola F, Seppecher P (1995) The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus Acad Sci Ser IIb Mecc Phys Chim Astron 321:303–308

    MATH  Google Scholar 

  58. dell’Isola F, Guarascio M, Hutter K (2000) A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch Appl Mech 70(5):323–337

    Article  MATH  Google Scholar 

  59. dell’Isola F, Madeo A, Seppecher P (2009) Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int J Solids Struct 46(17):3150–3164

    Article  MathSciNet  MATH  Google Scholar 

  60. dell’Isola F, Sciarra G, Batra R (2005) A second gradient model for deformable porous matrices filled with an inviscid fluid. Solid mechanics and its applications—IUTAM symposium on physicochemical and electromechanical interactions in porous media, vol 125, pp 221–229

  61. dell’Isola F, Sciarra G, Batra R (2003) Static deformations of a linear elastic porous body filled with an inviscid fluid. J Elasticity 72(1–2):99–120

    Article  MathSciNet  MATH  Google Scholar 

  62. Madeo A, dell’Isola F, Ianiro N, Sciarra G (2008) A variational deduction of second gradient poroelasticity II: an application to the consolidation problem. J Mech Mater Struct 3(4):607–625

    Article  Google Scholar 

  63. Sciarra G, dell’Isola F, Coussy O (2007) Second gradient poromechanics. Int J Solids Struct 44(20):6607–6629

    Article  MathSciNet  MATH  Google Scholar 

  64. Sciarra G, dell’Isola F, Ianiro N, Madeo A (2008) A variational deduction of second gradient poroelasticity, part I: general theory. J Mech Mater Struct 3(3):507–526

    Article  Google Scholar 

  65. Yang Y, Misra A (2012) Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int J Solids Struct 49(18):2500–2514

    Article  Google Scholar 

  66. Alibert J, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 8(1):51–73

    Article  MathSciNet  MATH  Google Scholar 

  67. dell’Isola F, Steigmann D (2015) A two-dimensional gradient-elasticity theory for woven fabrics. J Elasticity 118(1):113–125

    Article  MathSciNet  MATH  Google Scholar 

  68. Rinaldi A, Placidi L (2015) A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. J Appl Math Mech (Z Angew Math Mech) 94:862–877

    Article  MathSciNet  MATH  Google Scholar 

  69. de Oliveira Góes RC, de Castro JTP, Martha LF (2014) 3D effects around notch and crack tips. Int J Fatigue 62:159–170

    Article  Google Scholar 

  70. Del Vescovo D, Giorgio I (2014) Dynamic problems for metamaterials: review of existing models and ideas for further research. Int J Eng Sci 80:153–172

    Article  MathSciNet  Google Scholar 

  71. dell’Isola F, Della Corte A, Greco L, Luongo A (2016) Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange Multipliers and a perturbation solution. Int J Solids Struct 81:1–12

    Article  Google Scholar 

  72. Madeo A, Della Corte A, Greco L, Neff P (2015) Wave propagation in pantographic 2D lattices with internal discontinuities. Proc Estonian Acad Sci 64(3S):325–330

    Article  MATH  Google Scholar 

  73. dell’Isola F, Della Corte A, Giorgio I, Scerrato D (2015) Pantographic 2D sheets: discussion of some numerical investigations and potential applications. Int J Non-Linear Mech 80:200–208

    Article  Google Scholar 

  74. Piccardo G, Pagnini LC, Tubino F (2014) Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Contin Mech Thermodyn 27(1–2):261–285

    ADS  MathSciNet  MATH  Google Scholar 

  75. Auffray N (2015) On the isotropic moduli of 2D strain-gradient elasticity. Contin Mech Thermodyn 27(1–2):5–19

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Placidi L, Andreaus U, Della Corte A, Lekszycki T (2015) Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z Angew Math Phys 66:3699–3725

    Article  MathSciNet  MATH  Google Scholar 

  77. Auffray N, Dirrenberger J, Rosi G (2015) A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int J Solids Struct 69—-70:195–206

    Article  Google Scholar 

  78. Goda I, Assidi M, Belouettar S, Ganghoffer JF (2012) A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J Mech Behav Biomed Mater 16(1):87–108

    Article  Google Scholar 

  79. Misra A, Huang S (2012) Micromechanical stress-displacement model for rough interfaces: effect of asperity contact orientation on closure and shear behavior. Int J Solids Struct 49(1):111–120

    Article  Google Scholar 

  80. Selvadurai PA, Selvadurai APS (2014) On the effective permeability of a heterogeneous porous medium: the role of the geometric mean. Philos Mag 94(20):2318–2338

    Article  ADS  Google Scholar 

  81. Misra A, Poorsolhjouy P (2013) Micro-macro scale instability in 2D regular granular assemblies. Contin Mech Thermodyn 27(1–2):63–82

    ADS  MathSciNet  MATH  Google Scholar 

  82. Presta F, Hendy CR, Turco E (2008) Numerical validation of simplified theories for design rules of transversely stiffened plate girders. Struct Eng 86(21):37–46

    Google Scholar 

  83. Rinaldi A (2009) Rational damage model of 2D disordered brittle lattices under uniaxial loadings. Int J Damage Mech 18(3):233–257

    Article  Google Scholar 

  84. Solari G, Pagnini LC, Piccardo G (1997) A numerical algorithm for the aerodynamic identification of structures. J Wind Eng Ind Aerodyn 69–71:719–730

    Article  Google Scholar 

  85. Turco E (2013) Identification of axial forces on statically indeterminate pin-jointed trusses by a nondestructive mechanical test. Open Civ Eng J 7(1):50–57

    Article  Google Scholar 

  86. Eremeyev VA, Pietraszkiewicz W (2006) Local symmetry group in the general theory of elastic shells. J Elasticity 85(2):125–152

    Article  MathSciNet  MATH  Google Scholar 

  87. Eremeyev VA, Pietraszkiewicz W (2012) Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Struct 49(14):1993–2005

    Article  Google Scholar 

  88. Placidi L, El Dhaba AR. Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second gradient elasticity. Mech Math Solids. doi:10.1177/1081286515616043

  89. Armstrong MA (1983) Basic topology. Springer, New York

    Book  MATH  Google Scholar 

  90. Auffray N, Bouchet R, Brechet Y (2009) Derivation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior. Int J Solids Struct 46(2):440–454

    Article  MATH  Google Scholar 

  91. Auffray N, Kolev B, Petitot M (2014) On anisotropic polynomial relations for the elasticity tensor. J Elasticity 115(1):77–103

    Article  MathSciNet  MATH  Google Scholar 

  92. Indelicato G, Albano A (2009) Symmetry properties of the elastic energy of a woven fabric with bending and twisting resistance. J Elasticity 94(1):33–54

    Article  MathSciNet  MATH  Google Scholar 

  93. Federico S (2010) On the linear elasticity of porous materials. Int J Mech Sci 52(2):175–182

    Article  Google Scholar 

  94. Federico S (2012) Covariant formulation of the tensor algebra of non-linear elasticity. Int J Non-Linear Mech 47(2):273–284

    Article  Google Scholar 

  95. Federico S (2010) Volumetric-distortional decomposition of deformation and elasticity tensor. Math Mech Solids 15(6):672–690

    Article  MathSciNet  MATH  Google Scholar 

  96. Federico S, Grillo A, Herzog W (2004) A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties. J Mech Phys Solids 52(10):2309–2327

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Federico S, Grillo A, Imatani S (2015) The linear elasticity tensor of incompressible materials. Math Mech Solids 20(6):643–662

    Article  MathSciNet  MATH  Google Scholar 

  98. Federico S, Grillo A, Wittum G (2009) Considerations on incompressibility in linear elasticity. Nuovo Cimento C 32C(1):81–87

    ADS  Google Scholar 

  99. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Article  ADS  Google Scholar 

  100. Walpole LJ (1981) Elastic behavior of composite materials: theoretical foundations. Adv Mech 21:169–242

    Article  MATH  Google Scholar 

  101. Walpole LJ (1984) Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc R Soc Lond Ser A 391:149–179

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. Rahali Y, Giorgio I, Ganghoffer JF, dell’Isola F (2015) Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int J Eng Sci 97:148–172

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Prof. Francesco dell’Isola and Prof. Pierre Seppecher for fruitful discussions on the theoretical foundations of the continuum model used in this paper, on the importance of pantographic structures in the field of microstructured continua, and on some special technical topics in this manuscript. We also would like to thank the anonymous reviewer who helped to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Placidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Placidi, L., Andreaus, U. & Giorgio, I. Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J Eng Math 103, 1–21 (2017). https://doi.org/10.1007/s10665-016-9856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-016-9856-8

Keywords

Mathematics Subject Classification

Navigation