Skip to main content
Log in

Unidimensional model of polarisation changes in piezoelectric ceramics based on the principle of maximum entropy production

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a one-dimensional model for piezoelectric ceramics developed using the principle of maximum entropy production. Changes in polarisation are assumed to occur only as a consequence of domain wall movement. Such movement, it is assumed, can occur as a consequence of applied load or applied electric field. Simulations of experiments conducted by Fang and Li (J Mater Sci, 34:4001–4010, 1999) are presented and show good agreement with the experimental results. This suggests that abrupt domain switching (known to occur in piezoelectric ceramics at very high applied stresses and fields) may have less influence on the dissipative behaviour of piezoelectric sensors and actuators than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ilyushin AA (1948) Plasticity. Gostekhizdat, Moscow. In Russian

  2. Ilyushin AA (1956) Plasticité. Editions Eyrolles, Paris. In French

  3. Burgoyne CJ, Brennan MG (1993) Exact Ilyushin yield surface. Int J Solids Struct 30(8): 1113–1131

    Article  MATH  Google Scholar 

  4. Crisfield MA (1974) Some approximations in the non-linear analysis of rectangular plates using finite elements. Tech. Rep. 51UC, Transport and Road research Lab

  5. Ilyushin AA (1960) Problems of the general theory of plasticity. J Appl Math Mech 24(3): 587–603

    Article  MathSciNet  Google Scholar 

  6. Ilyushin AA (1960) On the increments of plastic deformations and the yield surface. J Appl Math Mech 24(4): 987–992

    Article  Google Scholar 

  7. Ilyushin AA (1961) On the postulate of plasticity. J Appl Math Mech 25(3): 746–752

    Article  MathSciNet  Google Scholar 

  8. Ilyushin AA, Lensky VS (1967) Strength of materials. Pergamon Press, Oxford

    Google Scholar 

  9. Hill R (1968) On constitutive inequalities for simple materials-I. J Mech Phys Solids 16(4): 229–242

    Article  ADS  MATH  Google Scholar 

  10. Hill R (1968) On constitutive inequalities for simple materials-II. J Mech Phys Solids 16(5): 315–322

    Article  ADS  MATH  Google Scholar 

  11. Zhang S, Xia R, Lebrun L, Anderson D, Shrout TR (2005) Piezoelectric materials for high power, high temperature applications. Mater Lett 59: 3471–3475

    Article  Google Scholar 

  12. Baillargeon BP, Vel SS (2005) Exact solution for the vibration and active damping of composite plates with piezoelectric shear actuators. J Sound Vib 282: 781–804

    Article  ADS  Google Scholar 

  13. Benjeddou A (2001) Advances in hybrid active-passive vibration and noise control via piezoelectric and viscoelastic constrained layer treatments. J Vib Control 7: 565–602

    Article  MATH  Google Scholar 

  14. Liu GR, Peng XQ, Lam KY, Tani J (1999) Vibration control simulation of laminated composite plates with integrated piezoelectrics. J Sound Vib 220: 827–846

    Article  ADS  Google Scholar 

  15. Zhuk YA, Guz IA, Sands CM (2010) Simplified monoharmonic approach to investigation of forced vibrations of thin wall multilayer inelastic elements with piezoactive layers under cyclic loading. Arch Appl Mech. doi:10.1007/s00419-010-0408-9

  16. Vidoli S, dell’Isola F (2001) Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks. Eur J Mech A 20: 435–456

    Article  MATH  Google Scholar 

  17. Park JH, Lee HC, Park YH, Kim YD, Ji CH, Bu J, Nam HJ (2006) A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator. J Micromech Microeng 16: 2281–2286

    Article  Google Scholar 

  18. Yoo B, Purekar AS, Zhang Y, Pines DJ (2010) Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels. Smart Mater Struct 19(7): 1–17. doi:10.1088/0964-1726/19/7/075017

    Article  Google Scholar 

  19. Liang RH, Rémiens D, Soyer C, Sama N, Dong XL, Wang GS (2008) Etching characteristics and absence of electrical properties damage of PZT thin films etched before crystallization. Microelectron Eng 85: 670–674

    Article  Google Scholar 

  20. Baxter FR, Bowen CR, Turner IG, Dent ACE (2010) Electrically active bioceramics, a review of interfacial responses. Ann Biomed Eng 38(6): 2079–2092

    Article  Google Scholar 

  21. Hastings GW, Mahmud FA (1988) Electrical effects in bone. J Biomed Eng 10: 515–521

    Article  Google Scholar 

  22. Fang D, Li C (1999) Nonlinear electric-mechanical behaviour of a soft PZT-51 ferroelectric ceramic. J Mater Sci 34: 4001–4010

    Article  Google Scholar 

  23. Hall DA (2001) Review: nonlinearity in piezoelectric ceramics. J Mater Sci 36: 4575–4601

    Article  Google Scholar 

  24. Liu F, Li HJ, Wang TC (2008) Energy principle and nonlinear electric-mechanical behavior of ferroelectric ceramics. Acta Mechanica 198: 147–170

    Article  MATH  Google Scholar 

  25. Arockiarajan A, Sivakumar SM, Sansour C (2010) A thermodynamically motivated model for ferroelectric ceramics with grain boundary effects. Smart Mater Struct 52: 440–445

    Google Scholar 

  26. Menzel A, Arockiarajan A, Sivakumar SM (2008) Two models to simulate rate-dependent domain switching effects—application to ferroelastic polycrystalline ceramics. Smart materials and structures 17(1). (Article Number: 015026)

    Google Scholar 

  27. McMeeking RM, Landis CM (2002) A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics. Int J Eng Sci 40: 1553–1577

    Article  MathSciNet  MATH  Google Scholar 

  28. McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Math 72: 581–590

    MATH  Google Scholar 

  29. Maugin GA (1992) The thermodynamics of plasticity and fracture. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Uchino K (2010) Ferroelectric devices, 2nd edn. CRC Press, Boca Raton, FL, USA

    Google Scholar 

  31. Lu W, Fang DN (1999) Nonlinear electro-mechanical behaviour and micromecanics modelling of ferroelectric domain evaluation. Acta Materialia 47(10): 2913–2926

    Article  Google Scholar 

  32. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford, UK

    Google Scholar 

  33. Jaffe B, Cook W, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, UK

    Google Scholar 

  34. Odegard GM (2004) Constitutive modeling of piezoelectric polymer composites. Acta Materialia 52: 5315–5330

    Article  Google Scholar 

  35. Otero JA, Rodríguez-Ramos R, Monsivais G, Pérez-Alvarez R (2005) Dynamical behavior of a layered piezocomposite using the asymptotic homogenization method. Mech Mater 37: 33–44

    Article  Google Scholar 

  36. Ren W, Masys AJ, Yang G, Mukherjee BK (2001) The variation of piezoelectric and electrostrictive strain as a function of frequency and applied electric field using an interferometric technique. In: Yuhas DE, Schnieder SC (eds) Proceedings of the 2001 12th IEEE international symposium on applications of ferroelectrics, vols I and II, pp 85–88. Department of Physics, Royal Military College of Canada, IEEE, Kingston, Ontario, K7K 7B4, Canada

  37. Weaver PM, Cain MG, Stewart M (2010) Temperature dependence of strain-polarisation coupling in ferroelectric ceramics. Appl Phys Lett 96(14). (Article Number: 142905)

    Google Scholar 

  38. Huber JE, Fleck NA, Landis CM, McMeeking RM (1999) A constitutive model for ferroelectric polycrystals. J Mech Phys Solids 47: 1663–1697

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Ziegler H (1983) An introduction to thermomechanics, 2nd edn. North Holland, Amsterdam

    MATH  Google Scholar 

  40. Chandler HW, Sands CM (2007) An optimization structure for frictional plasticity. Proc R Soc A 463: 2005–2020

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Martyusheva LM, Seleznev VD (2006) Maximum entropy production principle in physics, chemistry and biology. Phys Rep 426: 1–45

    Article  MathSciNet  ADS  Google Scholar 

  42. Hackl K, Fischer D (2008) On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc R Soc A 464: 117–132

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Muliana AH (2010) A micromechanical formulation for piezoelectric fiber composites with nonlinear and viscoelastic constituents. Acta Materialia 58: 3332–3344

    Article  Google Scholar 

  44. Guillon O, Delobelle P, ThiTbaud F, Walter V, Perreux D (2004) Uniaxial electromechanical behavior of a soft PZT: experiments and modeling. Ferroelectrics 308(1): 95–111

    Article  Google Scholar 

  45. Grünbichler H, Kreith J, Bermejo R, Supancic P, Danzer R (2010) Modelling of the ferroic material behaviour of piezoelectrics: characterisation of temperature-sensitive functional properties. J Eur Ceram Soc 30: 249–254

    Article  Google Scholar 

  46. Pathak A, McMeeking RM (2008) Three-dimensional finite element simulations of ferroelectric polycrystals under electrical and mechanical loading. J Mech Phys Solids 56: 663–683

    Article  MATH  Google Scholar 

  47. Selten M, Schneider GA,V,K, McMeeking RM (2005) On the evolution of the linear material properties of PZT during loading history—an experimental study. Int J Solids Struct 42: 3953–3966

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Sands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sands, C.M., Guz, I.A. Unidimensional model of polarisation changes in piezoelectric ceramics based on the principle of maximum entropy production. J Eng Math 78, 249–259 (2013). https://doi.org/10.1007/s10665-011-9491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-011-9491-3

Keywords

Navigation