Skip to main content

Advertisement

Log in

Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Termite mounds are abundant components of Tummalapalle area of uranium mineralization of Cuddapah District of Andhra Pradesh, India. The systematic research has been carried out on the application of termite mound sampling to mineral exploration in this region. The distribution of chemical elements Cu, Pb, Zn, Ni, Co, Cr, Li, Rb, Sr, Ba, and U were studied both in termite soils and adjacent surface soils. Uranium accumulations were noticed in seven termite mounds ranging from 10 to 36 ppm. A biogeochemical parameter called “Biological Absorption Coefficient” of the termite mounds indicated the termite affected soils contained huge amounts of chemical elements than the adjacent soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbadie, L., & Lepage, M. (1989). The role of subterranean fungus comb chambers (Isoptera, Macrotermitinae) in soil nitrogen cycling in a preforest savanna (Cote d Ivoire). Soil Biology & Biochemistry, 21, 1067–1071.

    Article  CAS  Google Scholar 

  • Ackermana, I. L., Teixeirab, W. G., Rihac, S. J., Lehmanna, J., & Fernandesa, E. C. M. (2007). The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. Applied Soil Ecology, 37, 267–276.

    Article  Google Scholar 

  • Anderson, A. N., & Jacklyn, P. (1993). Termites of the top end (p. 31). Australia: CSIRO.

    Google Scholar 

  • Belsky, A. J., Mwonga, S. M., Amundson, R. G., Duxbury, J. M., & Ali, A. R. (1983). Comparative effects of isolated trees on their under canopy environments in high-and low-rainfall savannas. J. Al. Ecology, 30, 143–155.

    Article  Google Scholar 

  • Bernier, M. A., Milner, M. W., & Myles, T. G. (1999). Mineralogical and geochemical analysis of cathedral termitaria applied to lode gold exploration in the Roandji alluvial gold fields, Bandas Greenstone Belt, Central African Republic. In 19th international geochemical exploration symposium proceedings, poster abstract, Vancouver.

  • Black, H. I. J., & Okwakol, M. J. N. (1997). Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: The role of termites. Appl. Soil Ecology, 6, 37–53.

    Article  Google Scholar 

  • Bouillon, A. (1970). Termites of Ethiopian region. In K. Krishna & F. M. Weesner (Eds.), Biology of termites 2 (pp. 153–280) New York: Academic.

    Google Scholar 

  • Brooks, R. R. (1983). Biological methods of prospecting for minerals. New York: Wiley.

    Google Scholar 

  • Brussaard, L., & Juma, N.G. (1996). Organisms and humus in soils. In A. Piccolo (Ed.), Humic substances in terrestrial ecosystems (pp. 329–359). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Burges, A., & Raw, R. (1967). Soil biology. New York: Academic.

    Google Scholar 

  • Cowan, J. A., Humphreys, G. S., Mitchell, P. B., & Murphy, C. L. (1985). An assessment of pedoturbation by two species of mound building ants. Australian Journal of Soil Research, 22, 95–107.

    Article  Google Scholar 

  • Dangerfield, J. M., McCarthy, T. S., & Flerry, W. N. (1998). The mound building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology, 14, 507–520.

    Article  Google Scholar 

  • d’Orey, F. L. C. (1975). Contribution of termite mounds to locating hidden copper deposits. Inst. Min. Metall. Bulletin, 84 B, 150–151.

    Google Scholar 

  • Dunn, C. (2007). Biogeochemistry in mineral exploration. Handbook of Exploration and Environmental Chemistry, 9. Amsterdam: Elsevier.

  • Dwivedy, K. K. (1985). Economic aspects of the Cuddapah basin with special reference to uranium—An overview. Seminar on Cuddapah Basin, Geological Society of India, Annual convention. Tirupati 1995, p. 193.

  • Ekundayo, E. O., & Aghatise, V. O. (1997). Soil properties of termite mounds under different land use types in typic Paleuduet of Midwestern Nigeria. Environmental Monitoring and Assessment, 45(1), 1–7.

    Article  CAS  Google Scholar 

  • Freyssinet, P., Roquin, C., Muller, J. C., Paquest, H., & Tardy, Y. (1990). Geochemistry and mineralogy of soils covering laterites and their use for gold exploration. In Y. Noack, & D. Nahon (Eds.), Geochemistry of the Earth’s surface and of mineral formation, 2nd International Symposium, Aixen Provence, France. Chemical Geology (Vol. 84, pp. 58–60).

  • Genise, J. F. (1997). A fossil termite nest from the Marpiatom stage (late Pliocene) of Argentina; Paleoclimatic indicator. Paleogeo. Paleoclim. Paleoecology, 136, 139–144.

    Article  Google Scholar 

  • Glazovskaya, N. F. (1984). Geochemical features of termitaria. Institute of Soil Science and Photosynthesis, Academy Sciences, USSR, Moscow Pochvovedenie-Cisti, 5, 19–28 (in Russian with English abstract).

  • Gleeson, C. F., & Poulin, R. (1989). Gold exploration in Niger using soils and termitaria. Journal of Geochemical Exploration, 31, 253–283.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, R. (1993). Exploration for gold using termitaria. Current Science, 65, 168–169.

    CAS  Google Scholar 

  • Hesse, P. R. (1955). Physical and chemical study of the soils of the termite mounds in East Africa. Journal of Ecology, 43, 449–461.

    Article  Google Scholar 

  • Holt, J. A. (1998). Microbial activity in the mounds of some Australian termites. Appl. Soil Ecology, 9, 187–191.

    Article  Google Scholar 

  • Insam, H. (1996). Microorganisms and humus in soils. In A. Piccolo (Ed.), Humic substances in terrestrial ecosystems (pp. 265–292). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Johnson, D. L., Domier, J. E. J., & Johnson, D. N. (2005). Reflections on the nature of soil and its biomantle. Annals of the Association of American Geographers, 95, 11–31.

    Article  Google Scholar 

  • Jungerius, P. D., vand den Ancker, J. A. M., & Mucher, H. J. (1999). The contribution of termites to microgranular structure of soils on the Uasin Gishu Plateau, Kenya. Catena, 34, 349–363.

    Article  Google Scholar 

  • Kovalevskii, A. L. (1969). Some observations in biogeochemical parameters (in Russian). Trudy. Buryat. Inst. Estest. Venn. Nauk, 2, 195–214.

    Google Scholar 

  • Le Roux, J. P., & Hambleton-Jones, B. B. (1991). The analysis of termite hills to locate uranium mineralization in the Karoo Basin of South Africa. Journal of Geochemical Exploration, 41, 341–347.

    Article  Google Scholar 

  • Lee, K. E. (1983). Soil animals and pedological processes. In soils: An Australian view point (pp. 629–644). London: CSIRO, Melbourne/Academic.

    Google Scholar 

  • Lee, K. E., & Wood, T. G. (1971). Termites and soils (p. 251). London: Academic.

    Google Scholar 

  • Levick, S. R., Asner, G. P., Chadwick, O. A., Khomo, L. M., Rogers, K. H., Hartshorn, A. S., et al. (2010). Regional insight into savanna hydrogeomorphology from termite mounds. Nature Communications, 6, 1. doi:10.1038/ncomms1066.

    Article  Google Scholar 

  • Lobry de Bruyn, L. A., & Conacher, A. J. (1990). The role of termites and ants in soil modification: A review. Australian Journal of Soil Research, 28, 55–93.

    Google Scholar 

  • Lobry de Bruyn, L. A., & Conacher, A. J. (1995). Soil modification by termites in the central wheatbelt of Western Australia. Australian Journal of Soil Research, 33, 179–193.

    Article  Google Scholar 

  • Maduakor, H. O., Okere, A. N., & Onyeanuforo, C. C. (1995). Termite mounds in relation to surroundings soil in the forest derived savanna zones of southern Nigeria. Biology and Fertility of Soils, 20, 157–162.

    Article  Google Scholar 

  • Mahaney, W. C., Hancock, R. G. V., Aufreiter, S., & Huffman, M. A. (1996). Geochemistry and clay mineralogy of termite mound soil and the role of geophagy in chimpanzees of the Mahale Mountains, Tanzania. Primate, 37, 121–134.

    Article  Google Scholar 

  • Mahaney, W. C., Ziin, J., Milner, M. W., Sanmugadas, K., Hancock, R. G. V., Aufreitter, S., et al. (1999). Chemistry, mineralogy and microbiology of termite mound soil eaten by the chimpanzees of the Mahale Mountains, Western Tanzania. Journal of tropical Ecology, 15, 565–588.

    Article  Google Scholar 

  • Mando, A. (1997). The role of termites and mulch in the rehabilitation of crusted Sahelian soils, tropical resource management papers N016 (p. 101). Wageningen: Wageningen Agricultural University.

    Google Scholar 

  • Mando, A., & Miedema, R. C. (1997). Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Al. Soil. Ecology, 6, 241–249.

    Article  Google Scholar 

  • McComie, L. D. (1981). An ecological study of Macrotermes carbonarius (Hagen) (Insecta, Termitidae, Macrotermitinae). Unpublished M.Sc., Thesis, University Sains, Malaysia.

  • McComie, L. D., & Dhanarajan, G. (1993). The physical and chemical composition of mounds of Macrotermes carbonarius (Hagen) (Termitidae, Macrotermitinae) in Penang, Malaysia. Soil Science, 44, 427–433.

    Article  CAS  Google Scholar 

  • Mermut, A. R., Arshad, M. A., & Arnaud, R. J. (1984). Micropedological study of termite mounds of three species of Macrotermes in Kenya. Soil Science Society of America, 48, 613–620.

    Article  Google Scholar 

  • Nagaraju, A., Prasad, K. S. S., & Prasad, E. A. V. (1998). Termite mound as a biogeochemical tool for mineral exploration; a case study from a part of Nellore mica schist belt, Andhra Pradesh, India. Fre. Environmental Bulletin, 7, 593–609.

    CAS  Google Scholar 

  • Nye, P.H. (1955). Some soil forming processes in the humid tropics. IV. The action of the soil fauna. Journal of Soil Science, 6, 73–83.

    Article  Google Scholar 

  • Park, H. C., Majer, J. D., & Hobbs, R. J. (1994). Contribution of Western Australian wheatbelt termite, Drepanotermes tamminensis (Hill), to the soil nutrient budget. Ecological Research, 9, 351–356.

    Article  Google Scholar 

  • Pomeroy, D. E., (1976). Some effects of mound building termites on soils in Uganda. Journal of Soil Science, 27, 377–394.

    Article  CAS  Google Scholar 

  • Pomeroy, D. E. (1978). The abundance of large termite mounds in Uganda in relation to their environment. Journal of Applied Ecology, 15, 51–63.

    Article  Google Scholar 

  • Pomeroy, D. E. (1983). Some effects of mound building termite soil of a semiarid area of Kenya. Journal of Soil Science, 34, 555–570.

    Article  CAS  Google Scholar 

  • Prasad, E. A. V., & Vijayasaradhi, D. (1984). Termite mound in geochemical prospecting. Current Science, 53, 649–651.

    CAS  Google Scholar 

  • Prasad, E. A. V., & Vijayasaradhi, D. (1985). Biogeochemistry of chromium and vanadium from mineralised zones of Kondapalli and Putrela, Krishna District, Andhra Pradesh. Journal of the Geological Society of India, 26, 133–136.

    CAS  Google Scholar 

  • Prasad, E.A.V., & Vijayasaradhi, D. (1986). Chromium and vanadium in plant–soil–termite soil association. Geobios, 13, 134–136.

    CAS  Google Scholar 

  • Prasad, E. A. V., Jayarama Gupta, M., & Dunn, C. E. (1987). Significance of termite mounds in gold exploration. Current Science, 56, 1219–1222.

    CAS  Google Scholar 

  • Raghu, V., & Prasad, E. A. V. (1996). Termite mound as a biogeochemical tool for mineral exploration: An example from the Mangampeta barite mining area, Cuddapah district, Andhra Pradesh. Journal of the Geological Society of India, 48, 683–687.

    CAS  Google Scholar 

  • Rogers, L.E. (1972). The ecological effects of western harvester ant (Pagonomyrmex occidentalis) in the shortgrass plain ecosystem. USA/BP Grassland Biome. Tech. Report No. 206.

  • Roquin, C., Freyssinet, P., Novikoff, A., & Tardy, Y. (1991). Geochemistry of termitaria and soils covering ferricrete: Application to gold exploration in Africa. In Eurolat’91. Technical University: Berlin.

  • Rose, A. W., Hawkes, M. E., & Webb, J. S. (1979). Geochemistry in mineral exploration (2nd ed., p. 657). London: Academic.

    Google Scholar 

  • Roy, M., Dhana Raju, R., Vasudeva Rao, M., & Vasudeva Rao, S. G. (1990). Stromatolitic uraniferous dolostone of the Vempalle formation, Cuddapah supergroup, Andhra Pradesh, India: Nature and bearing of stromatolites on uranium mineralisation. Exploration and Research for Atomic Minerals, 3, 103–113.

    CAS  Google Scholar 

  • Sankaranna, G., & Prasad, E. A. V. (2000). Biogeochemical survey of termite mounds and their vegetal cover: A case study from Agnigundala base metal province in Guntur district, Andhra Pradesh, India. Journal of the Geological Society of India, 56, 321–330.

    CAS  Google Scholar 

  • Sen, S. N., & Narasimha Rao, C. H. (1967). Igneous activity in Cuddapah basin and adjacent areas and suggestions on the paleogeography of the basin. Proc. Symp. on upper Mantle Project, Hyderabad, G.R.B and N.G.R.I. India, 8, 216–285.

    Google Scholar 

  • Soyer, J. (1983). Microrelief de buttes sur sols inodes munierement au sud Shaba Zaire. Catena, 10, 253–265.

    Google Scholar 

  • Suryaprakash Rao, K., & Raju, S.V. (1984). Geochemical analysis of termite mounds as a prospecting tool for tin deposits in Bastar M.P.—A preliminary study. Proceedings of the Indian Academy of Sciences, 93, 141–148.

    Article  Google Scholar 

  • Tathiane, S. S., Schaefer, C. E. G. R., de Souza Lynch, L., Arato, H. D., Viana, J. H. M., Filho, M. R. A., et al. (2009). Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil. Catena, 76, 107–113.

    Article  Google Scholar 

  • Tooms, J. S., & Webb, J. S. (1961). Geochemical prospecting investigations in the Northern Rhodesian copper belt. Economic Geology, 56, 815–846.

    Article  CAS  Google Scholar 

  • Vasudeva Rao, M, Nagabhushana, J. C., & Jayagopal, A. V. (1989). Uranium mineralization in the middle proterozoic carbonate rocks of the Cuddapah super group, Southern Peninsular India. Exploration and Research for Atomic Minerals, 2, 29–38.

    Google Scholar 

  • Watson, J. P. (1962). The soil below a termite mound. Journal of Soil Science, 13, 46–51.

    Article  CAS  Google Scholar 

  • Watson, J. P. (1970). Contribution of termites to development of zinc anomaly in Kalahari sand. Inst. Min. Metallurgy, 79, B53–B59.

    Google Scholar 

  • Watson, J. P. (1972). The distribution of gold in termite mounds and soils at a gold anomaly in Kalahari sand. Soil Science, 113, 317–321.

    Article  CAS  Google Scholar 

  • Watson, J. P. (1974). Calcium carbonate in termite mounds. Nature, 247, 72.

    Article  Google Scholar 

  • Watson, J. P. (1975). The composition of termite (Macrotermes s.) mounds on the soil derived from basic rocks in three rainfall zones of Rhodesia. Geoderma, 14, 147–158.

    Article  CAS  Google Scholar 

  • Watson, J. P. (1976). The composition of mounds of the termite Macrotermes falciger on soil derived from granite in three rainfall zones of Rhodesia. Journal of Soil Science, 27, 495–502.

    Article  CAS  Google Scholar 

  • Watson, J. P. (1977). The use of mounds of the termite Macrotermes falciger (Gerstacker) as a soil amendment. Journal of Soil Science, 28, 664–672.

    Article  CAS  Google Scholar 

  • Watson, J. P. (1979). The distribution of gold in termite mounds and soils at a gold anomaly in Kalahari sand. Soil Science, 113, 317–321.

    Article  Google Scholar 

  • West, W. F. (1965). Some unconventional ideas on prospecting. Chamber Mines Journal, (Rhodesia), 7, 40–42.

    Google Scholar 

  • West, W. F. (1970). Termite prospecting. The Bulawayo Symp. papers: No.2. Chamber Mines Journal, (Rhodesia), 12, 32–35.

    Google Scholar 

  • Wood, T. G. (1988). Termites and the soil environment. Biology and Fertility of Soils, 6, 228–236.

    Article  Google Scholar 

  • Wood, T. G., & Sands, W. A. (1978). The role of termites in ecosystems. In M. V. Brain (Ed.), Production ecology of ants and termites (pp. 245–292). Cambridge: Univ. Press.

    Google Scholar 

  • Wood, T. G., Johnson, R. A., & Anderson, J. M. (1983). Modification of soil in Nigerian savanna by soil-feeding Cubitermes (Isoptera Termitidea). Soil Biology & Biochemistry, 15, 575–579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagaraju Arveti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arveti, N., Reginald, S., Kumar, K.S. et al. Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India. Environ Monit Assess 184, 2295–2306 (2012). https://doi.org/10.1007/s10661-011-2118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2118-3

Keywords

Navigation