Skip to main content
Log in

Differentially-regulated defence genes in Malus domestica during phytoplasma infection and recovery

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

To improve knowledge about plant/phytoplasma interactions and, in particular, about the ‘recovery’ phenomenon in previously-infected plants, we investigated and compared expression levels of several defence-related genes (four pathogenesis-related proteins and three jasmonate-pathway marker enzymes) in apple plants showing different states of health: vigorous (healthy), phytoplasma-infected, and recovered. Real Time-PCR analyses demonstrated that genes are differentially expressed in apple leaf tissue according to the plants’ state of health. Malus domestica Pathogenesis-Related protein (MdPR) 1, MdPR 2 and MdPR 5 were significantly induced in leaves of diseased and symptomatic plants compared to leaves of those plants that were healthy or recovered. On the other hand, levels of all the jasmonate (JA)-pathway marker genes that we selected for this study, were up-regulated in the leaves of recovered plants compared to the diseased ones. In conclusion, our study demonstrated that two different sets of defence genes are involved in the interactions between apple plants and ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) and that these genes are differentially expressed during phytoplasma infection or recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Ahmad, J. N., & Eveillard, S. (2011). Study of the expression of defense related protein genes in stolbur C and stolbur PO phytoplasma-infected tomato. Bulletin of Insectology, 64(Supplementum), S159–S160.

    Google Scholar 

  • Beckers, G. J. M., & Spoel, S. H. (2006). Fine-tuning plant defence signaling: salicilate vs jasmonate. Plant Biology, 8, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bonasera, J. M., Kimand, J. F., & Beer, S. V. (2006). PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biology, 6, 23.

    Article  PubMed  Google Scholar 

  • Carraro, L., Ermacora, P., Loi, N., & Osler, R. (2004). The recovery phenomenon in apple proliferation infected apple trees. Journal of Plant Pathology, 86, 141–146.

    Google Scholar 

  • Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Article  PubMed  CAS  Google Scholar 

  • El-kereamy, A., El-sharkawy, I., Ramamoorthy, R., Taheri, A., Errampalli, D., Kuare, P., & Jayasankar, S. (2011). Prunus domestica pathogenesis-related protein-5 activated the defense pathway and enhances the resistance to fungal infection. PloS One, 6, e17973.

    Article  PubMed  CAS  Google Scholar 

  • Gasic, K., Hernandez, A., & Korban, S. S. (2004). RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA.library construction. Plant Molecular Biology Reports, 22, 437a–437g.

    Article  Google Scholar 

  • Gau, A. E., Koutb, M., Piotrowski, M., & Kloppstech, K. (2004). Accumulation of pathogenesis-related proteins in the apoplast of a susceptible cultivar of apple (Malus domestica cv. Elstar) after Infection by Venturia inaequalis and constitutive expression of PR genes in the resistant cultivar remo. European Journal of Plant Pathology, 110, 703–711.

    Article  CAS  Google Scholar 

  • Hogenhout, S. A., Oshima, K., Ammar, E., Kakizawa, S., Kingdom, H. N., & Namba, S. (2008). Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology, 9, 403–423.

    Article  PubMed  CAS  Google Scholar 

  • Iglesias, V. A., & Meins, F. (2000). Movement of plant viruses is delayed in a β-1,3-glucanase deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. The Plant Journal, 21, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Landi, L., & Romanazzi, G. (2011). Seasonal variation of defense-related gene expression in leaves from bois noir affected and recovered grapevines. Journal of Agricultural and Food Chemistry, 59, 6628–6637.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, K.-H., Schneider, B., Ahrens, U., & Seemüller, E. (1995). Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology, 85, 771–776.

    Article  CAS  Google Scholar 

  • Malnoy, M., Jin, Q., Borejsza-Wysocka, E. E., He, S. Y., & Aldwinckle, H. S. (2007). Overexpression of the apple MpNPR1 gene confers increased disease resistance in malus × domestica. Molecular Plant-Microbe Interaction, 20, 1568–1580.

    Article  CAS  Google Scholar 

  • Margaria, P., & Palmano, S. (2011). Response of the Vitis vinifera L. cv. ‘Nebbiolo’ proteome to Flavescence dorèe phytoplasma infection. Proteomics, 11, 212–224.

    Article  PubMed  CAS  Google Scholar 

  • Muller, P. Y., Janovjak, H., Miserez, A. R., & Dobbie, Z. (2002). Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques, 32, 1372–1379.

    PubMed  CAS  Google Scholar 

  • Musetti, R., Sanità di Toppi, L., Ermacora, P., & Favali, M. A. (2004). Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study. Phytopathology, 94, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Musetti, R., Sanità di Toppi, L., Martini, M., Ferrini, F., Loschi, A., Favali, M. A., & Osler, R. (2005). Hydrogen peroxide localisation and antioxidant status in the recovery of apricot plants from European stone fruit yellows. European Journal of Plant Pathology, 112, 53–61.

    Article  CAS  Google Scholar 

  • Musetti, R., Marabottini, R., Badiani, M., Martini, M., Sanità di Toppi, L., Borselli, S., Borgo, M., & Osler, R. (2007). On the role of H2O2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence Dorée disease. Functional Plant Biology, 34, 750–758.

    Article  CAS  Google Scholar 

  • Musetti, R., Paolacci, A., Ciaffi, M., Tanzarella, O. A., Polizzotto, R., Tubaro, F., Mizzau, M., Ermacora, P., Badiani, M., & Osler, R. (2010). Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease. Phytopathology, 100, 390–399.

    Article  PubMed  CAS  Google Scholar 

  • Musetti, R., De Marco, F., Farhan, K., Polizzotto, R., Santi, S., Ermacora, P., & Osler, R. (2011). Phloem-specific protein expression patterns in apple and grapevine during phytoplasma infection and recovery. Bulletin of Insectology, 64, 211–212.

    Google Scholar 

  • Osler, R., Carraro, L., Loi, N., & Refatti, E. (1993). Symptom expression and disease occurrence of a yellows disease of grapevine in northeastern Italy. Plant Disease, 77, 496–498.

    Article  Google Scholar 

  • Osler, R., Loi, N., Carraro, L., Ermacora, P., & Refatti, E. (2000). Recovery in plants affected by phytoplasmas. Proceedings of the 5 th Congress of the European Foundation for Plant Pathology, Taormina, Italy, September 18–22 2000, pp. 589–592.

  • Patui, S., Bertolini, A., Clincon, L., Ermacora, P., Braidot, E., Vianello, A., & Zancani, M. (2012). Involvement of plasma membrane peroxidases and oxylipin pathway in the recovery from phytoplasma disease in apple (Malus domestica). Physiologia Plantarum. doi:10.1111/j1399-3054.2012.01708.x.

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Research, 29, e45.

    Article  CAS  Google Scholar 

  • Schaller, F., Schaller, A., & Stintzi, A. (2005). Biosynthesis and metabolism of Jasmonates. Journal of Plant Growth Regulation, 23, 179–199.

    Google Scholar 

  • Sivasankar, S., Sheldrick, B., & Rothstein, S. J. (2000). Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiology, 122, 1335–1342.

    Article  PubMed  CAS  Google Scholar 

  • Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M., & Hogenhout, S. A. (2011). Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Science of USA, 108, E1254–E1263.

    Article  CAS  Google Scholar 

  • van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • van Wees, S. C. M., De Swart, E. A., van Pelt, J. A., van Loon, L. C., & Pieterse, C. M. J. (2000). Enhancement of disease induced resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Science of USA, 97, 8711–8716.

    Article  Google Scholar 

  • Wasternack, C. (2007). Jasmonates, an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100, 681–697.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, B. X., & Shen, Y. W. (2004). Accumulation of pathogenesis related type-5 like proteins in phytoplasma-infected garland chrysanthemum Chrysanthemum coronarium. Acta Biochemica Biophysica Sinica, 36, 773–779.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr Eleanor Callanan, University of Udine, for critical reading of the manuscript and for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Musetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musetti, R., Farhan, K., De Marco, F. et al. Differentially-regulated defence genes in Malus domestica during phytoplasma infection and recovery. Eur J Plant Pathol 136, 13–19 (2013). https://doi.org/10.1007/s10658-012-0147-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0147-6

Keywords

Navigation