Skip to main content

Advertisement

Log in

Febuxostat Improves the Local and Remote Organ Changes Induced by Intestinal Ischemia/Reperfusion in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Xanthine oxidase has been implicated in the pathogenesis of a wide spectrum of diseases, and is thought to be the most important source of oxygen-free radicals and cell damage during re-oxygenation of hypoxic tissues.

Aims

The present study was undertaken to demonstrate whether febuxostat is superior to allopurinol in prevention of the local and remote harmful effects of small intestinal ischemia/reperfusion injury in rats.

Methods

Intestinal ischemia was induced by superior mesenteric artery ligation. The rats were assigned to five groups: the sham control; the intestinal ischemia/reperfusion; the allopurinol; and the febuxostat 5 and 10 mg/kg pretreated ischemia/reperfusion groups. Treatment was administered from 7 days before ischemia induction. After the reperfusion, the serum and tissues were obtained for biochemical, pharmacological, and histological studies.

Results

Intestinal reperfusion led to an elevation in the serum levels of alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor-α, malondialdehyde, and xanthine oxidase as well as intestinal myeloperoxidase, malonadialdehyde, and xanthine oxidase/xanthine dehydrogenase activity. Furthermore, the ischemia/reperfusion induced a reduction in the contractile responsiveness to acetylcholine. These changes were significantly regulated by the pretreatment with febuxostat compared to allopurinol. The degree of pathological impairment in the intestinal mucosa, liver, and lung tissues were lighter in the pretreated groups.

Conclusions

Febuxostat may offer advantages over allopurinol in lessening local intestinal injury as well as remote hepatic and lung injuries induced by small intestinal ischemia/reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tendler DA. Acute intestinal ischemia and infarction. Semin Gastrointest Dis. 2003;14:66–76.

    PubMed  Google Scholar 

  2. Guneli E, Cavdar Z, Islekel H, et al. Erythropoietin protects the intestine against ischemia/reperfusion injury in rats. Mol Med. 2007;13:509–517.

    Article  PubMed  CAS  Google Scholar 

  3. Ismail HM, Wenxuan Y, Marc CW, et al. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci. 2004;49:1359–1377.

    Article  Google Scholar 

  4. Ceppa EP, Fuh KC, Bulkley GB. Mesenteric hemodynamic response to circulatory shock. Curr Opin Crit Care. 2003;9:127–132.

    Article  PubMed  Google Scholar 

  5. Ballabeni V, Barocelli E, Bertoni S, et al. Alterations of intestinal motor responsiveness in a model of mild mesenteric ischemia/reperfusion in rats. Life Sci. 2002;71:2025–2035.

    Article  PubMed  CAS  Google Scholar 

  6. Aldemir M, Gürel A, Büyükbayram H, et al. The effects of glucose-insulin-potassium solution and BN 52021 in intestinal ischaemia-reperfusion injury. Vasc Endovascular Surg. 2003;37:345–351.

    Article  PubMed  Google Scholar 

  7. Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med. 2002;33:774–797.

    Article  PubMed  CAS  Google Scholar 

  8. Julee PS, Deepa RP, Dhrubo JS. Febuxostat: the new generation novel xanthine oxidase Inhibitors. Int Pharm Sci. 2011;1:107–115. http://www.ipharmsciencia.com./Jan-March%202011.html.

  9. Strazzullo P, Puig JG. Uric acid and oxidative stress: relative impact on cardiovascular risk. Nutr Metab Cardiovasc Dis. 2007;17:409–414.

    Article  PubMed  CAS  Google Scholar 

  10. Bruce SP. Febuxostat: a selective xanthine oxidase inhibitor for the treatment of hyperuricemia and gout. Ann Pharmacother. 2006;40:2187–2194.

    Article  PubMed  CAS  Google Scholar 

  11. Stojadinovic A, Smallridge R, Nath J, et al. Anti-inflammatory effects of U74389F in a rat model of intestinal ischemia/reperfusion injury. Crit Care Med. 1999;27:764–770.

    Article  PubMed  CAS  Google Scholar 

  12. Kulah B, Besler HT, Akdag M, et al. The effects of verapamil vs. allopurinol on intestinal ischemia/reperfusion injury in rats. “An experimental study”. Hepatogastroenterology. 2004;51:401–407.

    PubMed  CAS  Google Scholar 

  13. Terzi C, Kuzu MA, Aşlar AK, et al. Prevention of deleterious effects of reperfusion injury using one-week high-dose allopurinol. Dig Dis Sci. 2001;46:430–437.

    Article  PubMed  CAS  Google Scholar 

  14. Margaritis EV, Yanni AE, Agrogiannis G, et al. Effects of oral administration of (l)-arginine, (l)-NAME and allopurinol on intestinal ischemia/reperfusion injury in rats. Life Sci. 2011;6:1070–1076.

    Article  Google Scholar 

  15. Sánchez-Lozada LG, Tapia E, Bautista-García P, et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2008;294:710–718. http://ajprenal.physiology.org/content/294/4/F710.full.

    Google Scholar 

  16. Danielle GS, Vanessa P, Adriana CS, et al. Role of PAF receptors during intestinal ischemia and reperfusion injury. A comparative study between PAF receptor-deficient mice and PAF receptor antagonist treatment. Br J Pharmacol. 2003;139:733–740.

    Article  Google Scholar 

  17. Wasowicz W, Neve J, Peretz A. Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: importance of extraction pH and influence of sample preservation and storage. Clin Chem. 1993;39:2522–2526.

    PubMed  CAS  Google Scholar 

  18. Beckman JS, Parks DA, Pearson JD, et al. A sensitive fluorometric assay for measuring xanthine dehydrogenase and oxidase in tissues. Free Radic Biol Med. 1989;6:607–615.

    Article  PubMed  CAS  Google Scholar 

  19. Hillegass LM, Griswold DE, Brickson B, et al. Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods. 1990;24:285–295.

    Article  PubMed  CAS  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.

    PubMed  CAS  Google Scholar 

  21. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–431.

    Article  PubMed  CAS  Google Scholar 

  22. Chiu CJ, McArdle AH, Brown R, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101:478–483.

    Article  PubMed  CAS  Google Scholar 

  23. Omar R, Nomikos I, Piccorelli G, Savino J, Agarwal N. Prevention of postischaemic lipid peroxidation and liver cell injury by iron chelation. Gut. 1989;30:510–514.

    Article  PubMed  CAS  Google Scholar 

  24. Murakami K, Bjertnaes LJ, Schmalstieg FC, et al. A novel animal model of sepsis after acute lung injury in sheep. Crit Care Med. 2002;30:2083–2090.

    Article  PubMed  CAS  Google Scholar 

  25. Köksoy C, Kuzu MA, Ergŭn H, et al. Intestinal ischemia–reperfusion impairs vasomotor functions of pulmonary vascular bed. Ann Surg. 2000;231:105–111.

    Article  PubMed  Google Scholar 

  26. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001;94:1133–1138.

    Article  PubMed  CAS  Google Scholar 

  27. Kaplan N, Yagmurdur H, Kilinc K, et al. The protective effects of intravenous anesthetics and verapamil in gut ischemia/reperfusion-induced liver injury. Anesth Analg. 2007;105:1371–1378.

    Article  PubMed  CAS  Google Scholar 

  28. Hammerman C, Goldschmidt D, Caplan MS, et al. Amelioration of ischemia-reperfusion injury in rat intestine by pentoxifylline-mediated inhibition of xanthine oxidase. J Pediatr Gastroenterol Nutr. 1999;29:69–74.

    Article  PubMed  CAS  Google Scholar 

  29. Cetinkaya A, Bulbuloglu E, Kurutas EB, et al. N-acetylcysteine ameliorates methotrexate-induced oxidative liver damage in rats. Med Sci Monit. 2006;12:274–278. http://www.ncbi.nlm.nih.gov/pubmed/16865059.

    Google Scholar 

  30. Granger DN, Stokes KY, Shigematsu T, et al. Splanchnic ischaemia-reperfusion injury: mechanistic insights provided by mutant mice. Acta Physiol Scand. 2001;173:83–91.

    Article  PubMed  CAS  Google Scholar 

  31. Lee J, Koo N, Min DB. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf. 2004;3:21–33.

    Article  CAS  Google Scholar 

  32. Okamoto K, Takeshi N. Crystal structures of mammalian xanthine oxidoreductase bound with various inhibitors: allopurinol, febuxostat, and FYX-051. J Nippon Med Sch. 2008;75:2–3. http://www.biomedexperts.com/Abstract.bme/18360072/Crystal_structures_of_mammalian_xanthine_oxidoreductase_bound_with_various_inhibitors_allopurinol_febuxostat_and_FYX.

  33. Anjana P, Mridul C, Himanshu P, et al. Febuxostat—a new treatment for hyperuricaemia in gout—a review article. Natl J Physiol Pharm Pharmacol. 2012;2:23–28. http://njppp.com/.

    Google Scholar 

  34. Takano Y, Hase-Aoki K, Horiuchi H, et al. Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase. Life Sci. 2005;76:1835–1847.

    Article  PubMed  CAS  Google Scholar 

  35. Ahmadinejad M, Rex M, Sutton RH, et al. The effects of allopurinol on the ultrastructure of ischaemic and reperfused large intestine of sheep. Aust Vet J. 1996;74:135–139.

    Article  PubMed  CAS  Google Scholar 

  36. Devecí E. Role of allopurinol, verapamil, dexamethasone and trifluoperazine as prophylactic agents in intestinal ischemia-reperfusion. Anal Quant Cytol Histol. 2008;30:99–104.

    PubMed  Google Scholar 

  37. Stephanie P, Alexander HT, Roberto A, et al. Allopurinol and xanthine oxidase inhibition in liver ischemia reperfusion. J Hepatobiliary Pancreat Sci. 2011;18:137–146.

    Article  Google Scholar 

  38. Guan W, Osanai T, Kamada T, et al. Effect of allopurinol pretreatment on free radical generation after primary coronary angioplasty for acute myocardial infarction. J Cardiovasc Pharmacol. 2003;41:699–705.

    Article  PubMed  CAS  Google Scholar 

  39. Rawan T, James EG. Potential future neuroprotective therapies for neurodegenerative disorders and stroke. Clin Geriatr Med. 2010;26:125–147.

    Article  Google Scholar 

  40. Liu PG, He SQ, Zhang YH, et al. Protective effects of apocynin and allopurinol on ischemia/reperfusion-induced liver injury in mice. World J Gastroenterol. 2008;14:2832–2837.

    Article  PubMed  CAS  Google Scholar 

  41. Taha MO, Simoẽs MJ, Noguerol EC, et al. Effects of allopurinol on ischemia and reperfusion in rabbit livers. Transpl Proc. 2009;41:820–823.

    Article  CAS  Google Scholar 

  42. Hopson SB, Lust RM, Sun YS, et al. Allopurinol improves myocardial reperfusion injury in a xanthine oxidasefree model. J Natl Med Assoc. 1995;87:480–484.

    PubMed  CAS  Google Scholar 

  43. Riaz AA, Wan MX, Schafer T, et al. Allopurinol and superoxide dismutase protect against leucocyte endothelium interactions in a novel model of colonic ischemia-reperfusion. Br J Surg. 2002;89:1572–1580.

    Article  PubMed  CAS  Google Scholar 

  44. Vaughan WG, Horton JW, Walker PB. Allopurinol prevents intestinal permeability changes after ischemia-reperfusion injury. J Pediatr Surg. 1992;27:968–972.

    Article  PubMed  CAS  Google Scholar 

  45. Riaz AA, Schramm R, Sato T, et al. Oxygen radical-dependent expression of CXC chemokines regulates ischemia/reperfusion-induced leukocyte adhesion in the mouse colon. Free Radic Biol Med.. 2003;35:782–789.

    Article  PubMed  CAS  Google Scholar 

  46. Hakguder G, Akgur FM, Ates O, et al. Short-term intestinal ischemia-reperfusion alters intestinal motility that can be preserved by xanthine oxidase inhibition. Dig Dis Sci. 2002;47:1279–1283.

    Article  PubMed  Google Scholar 

  47. Malkiel S, Har-el R, Schwalb H, et al. Interaction between allopurinol and copper: possible role in myocardial protection. Free Radic Res Commun. 1993;18:7–15.

    Article  PubMed  CAS  Google Scholar 

  48. Kinugasa Y, Ogino K, Furuse Y, et al. Allopurinol improves cardiac dysfunction after ischemia-reperfusion via reduction of oxidative stress in isolated perfused rat hearts. Circ J. 2003;67:781–787.

    Article  PubMed  CAS  Google Scholar 

  49. Nishizawa J, Nakai A, Matsuda K, et al. Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation. 1999;99:934–941.

    Article  PubMed  CAS  Google Scholar 

  50. Perez NG, Gao WD, Marban E. Novel myofilament Ca + 2-sensitizing property of xanthine oxidase inhibitors. Circ Res. 1998;83:423–430.

    Article  PubMed  CAS  Google Scholar 

  51. Yang CS, Tsai PJ, Chou ST, et al. The roles of reactive oxygen species and endogenous opioid peptides in ischemia-induced arrhythmia of isolated rat hearts. Free Radic Biol Med.. 1995;18:593–598.

    Article  PubMed  CAS  Google Scholar 

  52. Bielefeldt K, Conklin JL. Intestinal motility during hypoxia and reoxygenation in vitro. Dig Dis Sci. 1997;42:878–884.

    Article  PubMed  CAS  Google Scholar 

  53. Udassin R, Eimerl D, Schiffman J, et al. Postischemic intestinal motility in rat is inversely correlated to length of ischemia. An in vivo animal model. Dig Dis Sci. 1995;40:1035–1038.

    Article  PubMed  CAS  Google Scholar 

  54. Menger MD, Rücker M, Vollmar B. Capillary dysfunction in striated muscle ischemia/reperfusion: on the mechanisms of capillary “no-reflow”. Shock. 1997;8:2–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani Nabil Shafik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafik, A.N. Febuxostat Improves the Local and Remote Organ Changes Induced by Intestinal Ischemia/Reperfusion in Rats. Dig Dis Sci 58, 650–659 (2013). https://doi.org/10.1007/s10620-012-2391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2391-1

Keywords

Navigation