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Abstract
In machine learning, continuously retraining a model guarantees accurate predic-
tions based on the latest data as training input. But to retrieve the latest data from a 
database, time-consuming extraction is necessary as database systems have rarely 
been used for operations such as matrix algebra and gradient descent. In this work, 
we demonstrate that SQL with recursive tables makes it possible to express a com-
plete machine learning pipeline out of data preprocessing, model training and its 
validation. To facilitate the specification of loss functions, we extend the code-
generating database system Umbra by an operator for automatic differentiation for 
use within recursive tables: With the loss function expressed in SQL as a lambda 
function, Umbra generates machine code for each partial derivative. We further use 
automatic differentiation for a dedicated gradient descent operator, which generates 
LLVM code to train a user-specified model on GPUs. We fine-tune GPU kernels 
at hardware level to allow a higher throughput and propose non-blocking synchro-
nisation of multiple units. In our evaluation, automatic differentiation accelerated 
the runtime by the number of cached subexpressions compared to compiling each 
derivative separately. Our GPU kernels with independent models allowed maximal 
throughput even for small batch sizes, making machine learning pipelines within 
SQL more competitive.

Keywords SQL · GPU · In-database machine learning · Code-generation

1 Introduction

Typically, steps of machine learning pipelines—that consist of data preprocess-
ing [1, 2], model training/validation [3] and finally its deployment on unlabelled 
data [4]—are embedded in Python scripts that call up specialised tools such as 
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NumPy, TensorFlow, Theano or Pytorch. Hereby, especially tensor operations 
and model training are co-processed on graphical processing units (GPUs) or ten-
sor processing units (TPUs) developed for this purpose.

Integrating machine learning pipelines into database systems is a promising 
approach for data-driven applications [5–9]. Even though specialised tools will 
outperform general-purpose solutions, we argue that an integration in database 
systems will simplify data provenance and its lineage, and allows complex que-
ries as input. So far, machine learning pipelines inside of database queries are 
assembled from user-defined functions [10–14] and operators of an extended rela-
tional algebra. This brings the model close to the data source [15] with SQL [16] 
as the only query language. As modern HTAP main-memory database systems 
such as SAP  HANA [17], HyPer [18–21] and Umbra [22–27] are designed for 
transactional and analytical workload, this allows the latest database state to be 
queried [28, 29]. But for continuous machine learning based on the latest tuples, 
only stand-alone solutions exist [30, 31] whose pipelines retrain weights for a 
model partially [32] when new input data is available.

In the last decade, research on database systems has focused on GPU co-pro-
cessing to accelerate query engines [33–36]. GPUs, initially intended for image 
processing and parallel computations of vectorised data, also allow general-pur-
pose computations (GPGPU). In the context of machine learning, matrix opera-
tions [37] and gradient descent [38, 39] profit from vectorised processing [40] 
available on GPUs [41]. Vectorised instructions accelerate model training and 
matrix computations—as the same instructions are applied elementwise. When a 
linear model is trained, vectorised instructions allow the loss as well as the gradi-
ent to be computed for multiple tuples in parallel.

We argue that SQL is sufficient to formulate a complete machine learning 
pipeline. Our database system, Umbra, is a computational database engine that 
offers—in addition to standardised SQL:2003 features—a matrix datatype, a data 
sampling operator and continuous views [42]. A continuous view [43–45] updates 
precomputed aggregates on incoming input. This kind of view—combined with 
sampling [46–50]—can be used as source to train and retrain a model partially 
within a recursive table.

This work starts by expressing gradient descent as a recursive table as well 
as the views needed for data preprocessing in SQL. Instead of manually deriv-
ing the gradient, we propose an operator for automatic differentiation. The algo-
rithm for automatic differentiation is type-agnostic and works on datatypes that 
provide the needed arithmetic expressions, for example, floating point, integer 
values or their aggregation into arrays. Based on automatic differentiation, we 
will proceed with an operator for gradient descent to be able to off-load work to 
GPUs (see  Fig.  1). This work extends a previous publication [51] by recursive 
SQL to train a neural network, code-generation for GPU and additional experi-
ments. The additional contribution consists of the theoretical background of 
training a neural network in SQL (Sect. 5.3), the description of just-in-time (JIT) 
compilation to GPU (Sect. 6.3) and an extended evaluation out of training logistic 
regression (Fig.  19), neural networks (Figs.  20, 21, 33b) in SQL and the inte-
gration in Umbra (Sect. 7.4). The experiments involve different model functions 
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and measure the performance of generated GPU kernels. In particular, this work’s 
contributions are

• machine learning pipelines expressed in pure SQL,
• automatic differentiation in SQL that uses a lambda function [52–54] to derive 

the gradient and generates LLVM code,
• the integration of gradient descent as a database operator,
• fine-tuned GPU kernels that maximise the GPU specific throughput even for 

small and medium batch sizes,
• and an evaluation of strategies for synchronising gradient descent on processing 

units with different throughput.

The paper first summarises subsidiary work on machine learning pipelines, GPU co-
processing and in-database machine learning (Sect. 2), before it proceeds with the 
integration of gradient descent inside a database system. In detail, we focus on data 
preprocessing for machine learning pipelines and recursive computation of gradient 
descent within the code generating database system Umbra (Sect. 3). During code-
generation, an operator for automatic differentiation compiles the gradient from a 
lambda expression (Sect. 4). This allows to express arbitrary loss functions includ-
ing matrix operations as used for a neural network (Sect. 5). Based on automatic dif-
ferentiation and a dedicated operator for gradient descent, we compile LLVM code 
directly for GPUs. The generated code processes mini batches on GPUs and syn-
chronises parallel workers on multiple devices as well as multiple learners on a sin-
gle GPU (Sect. 6). We will evaluate CPU and GPU-only approaches in terms of per-
formance and accuracy using a NUMA-server cluster with multiple GPUs (Sect. 7).

2  Related work

This work incorporates past research on deploying continuous machine learn-
ing pipelines, GPU co-processing and in-database machine learning, which is here 
introduced.

Fig. 1  In-database machine 
learning: gradient descent with 
GPU support, embedded in a 
query plan
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Machine learning pipelines To cover the life-cycle of machine learning pipe-
lines, automatic machine learning (AutoML) tools such as Lara [55] assist in data 
preprocessing as well as finding the best hyper-parameters. Basically, our work ties 
in with the idea of continuous deployment of machine learning pipelines [30]. The 
idea is based on an architecture that monitors the input stream and avoids complete 
retraining by sampling batches.

Database systems and machine learning In the last decade, research has 
focused on integrating techniques of database systems into dedicated machine learn-
ing tools. One example of this kind of independent system is SystemML, with its 
own declarative programming language, and its successor SystemDS [56]. The inte-
gration of machine learning pipelines inside database systems would allow end-to-
end machine learning [54, 57, 58] and would inherit benefits such as query optimisa-
tion and recovery by design [59]. The work of Jankov et al. [60] states that complete 
integration is possible by means of the extension of SQL with additional recursive 
statements as used in our study. As a layer above database systems that also uses 
SQL, LMFAO [61] learns models on pre-aggregated data.

GPU acceleration Crossbow [41] is a machine learning framework, written in 
Java, that maintains and synchronises local models for independent learners that 
call C++ functions to access NVIDIA’s deep neural network library cuDNN1. We 
rely on the study when adjusting batch sizes for GPUs and synchronising multiple 
workers.

JIT compiling for GPU The LLVM compiler framework, often used for code 
generation within database engines [62–64], also offers just-in-time compilation for 
NVIDIA’s Compute Unified Device Architecture (CUDA) [65]. Code compilation 
for GPU allows compilation for heterogeneous CPU-GPU clusters [66] as LLVM 
addresses multiple target architectures as used in this study.

3  In‑database gradient descent

This section explains the mathematical background for implementing gradient 
descent for linear regression (Sect. 4) and neural networks (Sect. 5) in SQL or as 
GPU kernel (Sect.  6). Therefore, this section first introduces mini-batch gradient 
descent, before describing a machine learning pipeline out of preprocessing and 
model training expressed in SQL.

3.1  Mini‑batch gradient descent

Given a set of tuples (�, y) ∈ X ⊆ (ℝm,ℝ) with m features, a label and weights 
� ∈ ℝ

m , then optimisation methods such as gradient descent try to find the best param-
eters �∞ of a model function m

�
(�) , e.g., a linear function (Eq. 1) that approximates 

the given label  y. A loss function l
�,y(�) measures the deviation (residual) between 

1 https:// devel oper. nvidia. com/ cudnn.

https://developer.nvidia.com/cudnn


209

1 3

Distributed and Parallel Databases (2022) 40:205–259 

an approximated value m
�
(�) and the given label y, for example, mean squared error 

(Eq. 2):

To minimise lX(�) , gradient descent updates the weights per iteration by subtracting 
the loss function’s gradient times the learning rate � until the optimal weights �∞ 
are approximated (Eq. 6). Stochastic gradient descent takes one tuple for each step 
(Eq. 4), whereas batch gradient descent considers all tuples per iteration and aver-
ages the loss (Eq. 5):

Smaller batch sizes, mini-batches, are mandatory when the entire input does not fit 
into memory and allows parallelism later on. Therefore, mini-batch gradient descent 
splits an input dataset X into disjoint mini-batches X = X0 ⊎⋯ ⊎ Xo.

Using a recursive table, gradient descent can be expressed in SQL. Listing 1 shows 
five iterations based on an exemplary loss function with two weights (Eq. 7): First, the 
weights get initialised (line 2), then each iteration updates the weights (Eq. 5, line 3) 
based on manually derived gradients (Eq. 8) and � = 0.05:

(1)m
�
(�) =

m∑

i=1

xi ⋅ wi = �
T
⋅ � ≈ y,

(2)l
�,y(�) = (m

�
(�) − y)2,

(3)lX(�) =
1

|X|
∑

(�,y)∈X

l
�,y(�) =

1

|X|
∑

(�,y)∈X

(m
�
(�) − y)2.

(4)�t+1 = �t − � ⋅ ∇l
�,y(�t),

(5)�t+1 = �t − � ⋅ ∇lX(�t) = �t − � ⋅
1

|X|
∑

(�,y)∈X

∇l
�,y(�),

(6)�∞ ≈ lim
t→∞

�t.

(7)lx,y(a, b) = (a ⋅ x + b − y)2

(8)∇lx,y(a, b) =

(
�l∕�a
�l∕�b

)
=

(
2(ax + b − y) ⋅ x

2(ax + b − y)

)
.
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To avoid overfitting, one mini-batch or an explicitly given input will serve as 
the validation dataset for accuracy measurements. The remaining mini-batches will 
be used as input for every iteration of parallel and distributed mini-batch gradient 
descent.

To avoid underestimation of the predicted values, Derakhshan et al. [30] propose 
root mean squared logarithmic error (RMSLE) on the validation dataset:

3.2  Machine learning pipeline in SQL

We argue that SQL offers all components needed for data preprocessing, and 
recursive tables allow gradient descent to be performed. Thus, we reimplemented 
the components of a machine learning pipeline (see  Fig.  2) proposed by Derakh-
shan et al. [30] in SQL (see Fig. 3):

(9)�t+1 = �t − � ⋅

√
1

|X|
∑

(�,y)∈X

(log((m
�
(�) + 1) − log(y + 1))2

Fig. 2  Components of a machine learning pipeline: chunked input will be processed independently 
(potentially off-loaded to GPUs). After every iteration, the weights (blue) are synchronised
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• The Input parser parses input CSV files and stores the data in chunks using 
row-major format to allow batched processing of mini-batch gradient descent. In 
SQL, this corresponds to a simple table scan. In Umbra, we can also use a for-
eign table as input for continuous views (table taxidata).

• The Feature extractor extracts features from data chunks, which is a simple 
projection in SQL. For example, day and hour are extracted from timestamps, 
distance metrics from given coordinates (view processed).

• The Anomaly detector deletes tuples of a chunk on anomalies. An anomaly 
occurs when at least one attribute in a tuple passes over or under a predefined 
threshold. For anomalies, we filter for user-defined limits in a selection (view 
normalised).

• The Standard scaler scales all attributes in the range [0, 1] to equal each attrib-
ute’s impact on the model, this corresponds again to a projection and nested sub-
queries to extract the attribute’s extrema (view normalised).

• The Scheduler manages gradient descent iterations until the weights converge. 
This can be either done using recursive tables or using an operator that off-loads 
work to GPU.

Listing 2 shows the resulting SQL queries using a taxi dataset as exemplary input 
and a linear function to predict a trip’s duration based on its day, hour, distance and 
bearing. In this example, we perform 50 iterations of mini-batch gradient descent 
based on a sample size of ten tuples (tablesample reservoir (10)) and a 
learning rate of 0.001. In every iteration, we subtract the average gradient from the 
weights (line 7-14), which we finally use to compute the loss (line 15/16). As 
computing each partial derivative manually can be bothersome and error-prone for 

W{[i, v]}

Gradient Descent

π d
max(d) , h

max(h) , hav
max(hav) , bear

max(bear)

σd<dlimit∧h<hlimit∧hav<havlimit∧bear<bearlimit

×

γmax(d),max(h),
max(hav),max(bear)

πd,h,hav(xlat,xlong,ylat,ylong),
bear(xlat, xlong, ylat, ylong)

R{[d, h, xlat, xlong, ylat, ylong, t]}

πd,h,hav(xlat,xlong,ylat,ylong),
bear(xlat, xlong, ylat, ylong)

R{[d, h, xlat, xlong,

ylat, ylong, t]}

Table Scan

Feature Extractor

Anomaly Detector

Standard Scaler

Optimal Weights

Nested Subquery

Fig. 3  Operator plan inside of a database system with linear regression on the New York taxi dataset in 
relational algebra: a projection extracts the features as haversine (hav) distance or bearing (bear), anoma-
lies are deleted using predefined thresholds (denoted as limit)
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complex loss functions, we proceed with an operator for automatic differentiation in 
the next section.

4  Database operators for machine learning

This section describes the operators in Umbra, we created to facilitate machine 
learning in SQL. Modern database systems like Umbra generate code for processing 
chunks of tuples in parallel pipelines, so we first explain code generation before pre-
senting the operators for automatic differentiation and gradient descent. The algo-
rithm for automatic differentiation presents how to parse an expression to calculate 
the derivatives and is expanded for matrix operations in Sect. 5.

4.1  Code generation

With Umbra as the integration platform, an operator follows the concept of a code-
generating database system. It achieves parallelism by starting as many pipelines 
as threads available and expects each operator in a query plan to generate code for 
processing chunks of tuples. Unary operators can process tuples within a pipeline, 
whereas binary operators have to materialise at least the result of one incoming child 
node first before pipelined processing begins.

Each operator of Umbra, similar to HyPer [18], provides two functions, pro-
duce() and consume() to generate code. On the topmost operator of an 
operator tree, produce() is called, which recursively calls the same method 
on its child operators. Arriving at a leaf operator, it registers pipelines for paral-
lel execution and calls consume() on the parent node. Within these pipelines, 
the generated code processes data inside registers without overhead. An operator 
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for gradient descent is a pipeline breaker, as it accesses batches of tuples multiple 
times until the weights converge, whereas an operator for automatic differentia-
tion is part of a pipeline as it just adds the partial derivatives per tuple.

4.2  Automatic differentiation

Reverse mode automatic differentiation first evaluates an expression, then it 
propagates back the partial derivative in reverse order by applying the chain rule 
(see  Fig.  4). Each partial derivative is the product of the parent one (or 1 for 
the topmost node) and the derived function with its original arguments as input 
(see Fig. 5). This allows computing each expression’s derivative in one pass by 
reusing each subexpression. Algorithm 1 parses an arithmetic expression to per-
form reverse mode automatic differentiation. It uses the evaluation of the original 
arguments to calculate the partial derivatives. Arriving at a variable, the propa-
gated value is added to a hashtable with the variable as key. The hashtable allows 
retrieving the derivatives, which is the sum of propagated values per variable, 
afterwards.

As Umbra compiles arithmetic expressions to machine code as well, it is per-
fectly suited for automatic differentiation. Similar to how an arithmetic SQL 
expression is compiled during code generation, we created a function that can be 
used to generate the expression’s partial derivatives: Once a partial derivative has 
been compiled, its subexpressions will be cached inside an LLVM register that 
can be reused to generate the remaining partial derivatives. This accelerates the 
runtime during execution.

Fig. 4  Reverse mode automatic 
differentiation: First, the func-
tion f(g(l, r)) gets evaluated, 
then each partial derivative is 
computed in reverse order. Each 
arrow represents one cached 
computation

f(g(l, r))

g(l, r)

l r
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∂g

∂f
∂r = ∂f
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∂l = ∂f

∂g · ∂g
∂l

f(x, y, z) = (x+ y) · z

·

+ z

x y
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2 3

1
∂f
∂z = 1 · ∂(x+y)·z

∂z = x + y = 5∂f
∂x+y = 1 · ∂(x+y)·z

∂x+y = z = 6

∂f
∂y = 6 · ∂x+y

∂y = 6 · 1 = 6
∂f
∂x = 6 · ∂x+y

∂x = 6 · 1 = 6

Fig. 5  Automatic differentiation f (x, y, z) = (x + y) ⋅ z on x = 2, y = 3, z = 6
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To specify the expression, we integrated lambda functions as introduced in 
HyPer into Umbra. Lambda functions are used to inject user-defined SQL expres-
sions into table operators. Originally developed to parametrise distance metrics 
in clustering algorithms or edges for the PageRank algorithm, lambda functions 
are expressed inside SQL queries and allow “variation points" [67] in otherwise 
inflexible operators. In this way, lambda expressions broaden the application of 
the default algorithms without the need to modify the database system’s core. 
Furthermore, SQL with lambda functions substitutes any new query language, 
offers the flexibility and variety of algorithms needed by data scientists, and 
ensures usability for non-expert database users. In addition, lambda functions 
allow user-friendly function specification, as the database system automatically 
deduces the lambda expressions’ input and output data types from the previously 
defined table’s attributes. Lambda functions consist of arguments to define names 
for the tuples (but whose scope is operator specific) and the expression itself. All 
provided operations on SQL types, even on arrays, are allowed:

𝜆(< name1 >,< name2 >, ...)(< SQL expression >).
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 We expose automatic differentiation as a unary table operator called derivation 
that derives an SQL expression with respect to every affected column reference and 
adds its value as a further column to the tuple (see Listing 3). We can use the opera-
tor within a recursive table to perform gradient descent (see Listing 4, 5). This elim-
inates the need to derive complex functions manually and accelerates the computa-
tion with a rising number of attributes, as each subexpression is evaluated only once.

4.3  Gradient descent operator

Our operator for gradient descent materialises incoming tuples, performs gradient 
descent and produces the optimal weights for labelling unlabelled data. The pro-
posed operator is considered a pipeline breaker as it needs to materialise all input 
tuples beforehand to perform multiple training iterations. This section focuses on the 
operator characteristics, the design with its input queries and the actual implementa-
tion, with linear regression as an example.

4.3.1  Operator design

We design an operator for gradient descent, which requires one input for the train-
ing, one for the initial weights and optionally one for the validation set, and returns 
the optimal weights. If no input is given as validation set, a fraction of the training 
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set will be used for validation. The user can set the parameters for the batch size, 
the number of iterations and the learning rate as arguments inside the operator call 
(see Listing 6). Figure 6 shows gradient descent inside of an operator tree: it expects 
the training data set as parallel input pipelines and returns the optimal weights. 
These might serve as input for a query that labels a test data set. In addition, SQL 
lambda functions, which allow users to inject arbitrary code into operators, spec-
ify the loss function to be used for gradient descent. Gradient descent benefits from 
generated code as it allows user-defined model functions to be derived at compile 
time to compute its gradient without impairing query runtime. 

This implies three parts for the integration of gradient descent: consuming all 
input tuples in parallel pipelines, performing gradient descent with a call to the 
GPU kernels and producing the weights in a new pipeline. This first separation is 
necessary, as we need to know the number of tuples in advance to determine when 
one training epoch ends. Specific to Umbra, we cannot assume the same number 
of available threads for training as for the parallel pipelines; we have to merge all 
materialised tuples before we start new parallel threads for the training iterations 
afterwards.

4.3.2  Implementation

The generated code runs gradient descent iterations in parallel. Devoted to batched 
processing on GPUs, we deduce a parallel mini-batch gradient descent operator. 
First, it materialises the input tuples thread locally (generated by consume()) and 

Fig. 6  Operator plan inside of a database system with one operator for training and a query for predicting 
labels. Dashed lines illustrate code generation, solid lines compiled code. The gradient descent 
operator materialises input from parallel pipelines within local threads, performs iterations and returns 
the optimal weights
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merges them globally. Afterwards, each thread picks one mini-batch and maintains a 
local copy of the global weights.

Algorithm  2 depicts the training procedure without GPU support. Again, for 
simplicity, the validation phase with the corresponding validation input is omitted. 
Inside of the two loops (lines 5–9), one is unrolled during compile time in order 
to dispatch tasks to parallel threads, and one executed at runtime to manage gradi-
ent descent iterations, we can later off-load work to GPUs. Inside such a code frag-
ment, we start as many CPU threads as GPU units are available with whom one 
CPU thread is associated.

5  Neural network

As the previous sections presented gradient descent and automatic differentiation on 
scalar values, this section expands their use to matrix operations for training a neural 
network. Mini-batch gradient descent can be used to train a neural network with an 
adjusted model function. We assume every input with m attributes serialised as one 
input vector x ∈ ℝ

1×m together with a categorical label y ∈ L . This corresponds to a 
database tuple as we later store one image as one tuple with one attribute per pixel 
and colour.

We consider a fully connected neural network with one hidden layer of size h, 
consequently we gain two weight matrices wxh ∈ ℝ

m×h and who ∈ ℝ
h×|L| . With 

sigmoid (Eq.  10) as activation function (applied elementwise) we obtain a model 
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function mwxh,who
(x) ∈ ℝ

1×|L| , that produces an output vector of probabilities, also 
known as forward pass. The output vector is compared to the one-hot-encoded cat-
egorical label ( yones ). The index of the entry being one should be equal to the index 
of the highest probability.

Although neural networks can be specified in SQL-92, the corresponding query will 
consist of nested subqueries, that are not intuitive to create. As we created an array 
data type in Umbra [54], nested subqueries can be avoided by using this data type 
extended by matrix algebra.

5.1  Neural network in SQL‑92

Expressing neural networks in SQL-92 is possible having one relation for the 
weights and one for the input tuples (Listing 7). The weights relation will contain 
the values in normal form as a coordinate list. If one relation contains all weight 
matrices, it will also contain one attribute (id) to identify the matrix.

We implement the forward pass in SQL as a query on the validation dataset 
that returns the probabilities for each category. It uses nested queries to extract the 
weights by an index and arithmetic expressions for the activation function. Listing 7 
shows the forward pass with one single layer and two attributes ( m = 2 ) as input. For 
simplicity, we use SQL functions for nested subqueries and for the sigmoid function. 

5.2  Neural network with an array data type

Expressing matrix operations in SQL-92 has the downside of manually specify-
ing each elementwise multiplication. For this reason, Umbra and HyPer provide an 
array data type that is similar to the one in PostgreSQL and allows algebraic expres-
sions as matrix operations. 

(10)sig(x) = (1 + e−x)−1

(11)mwxh,who
(x) = sig(

axh
⏞⏞⏞⏞⏞⏞⏞⏞⏞

sig(x ⋅ wxh) ⋅who)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

aho

.
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In Listing 8, we first construct the weight matrices from its relational representa-
tion and apply the sigmoid function on arrays as a user-defined function. Hence, the 
forward-pass for a single layer consists of the matrix multiplication and the sigmoid 
function on arrays.

An array data type allows transforming a categorical data type L into a one-hot-
encoded vector even if the number of categories |L| is not known at compile time. In 
Listing 9, we first create a dictionary to assign a consistent number to each category 
(line 3). Afterwards, we can create an array that corresponds to a one-hot-encoded 
vector, whose entry is one at the corresponding index with leading and subsequent 
zeros (line 4). 

5.3  Training a neural network

Automatic differentiation allows training a neural network when the derivatives of 
matrix multiplication [68] (see Algorithm 3) and activation functions (see Table 1) 
are implemented. To integrate the derivatives of matrix multiplication in our exist-
ing implementation, we need to extend the derivation rule for multiplications 
( Z′

⋅ YT instead of z′ ⋅ y and Z′T
⋅ X instead of z′ ⋅ x ) and overload the transpose oper-

ator internally, so that transpose, when called on a scalar such as real numbers like 
floating-point values, will be ignored. Furthermore, we need the Hadamard product 

Table 1  Implemented activation 
functions and their derivatives

Name Abbreviation f(x) f �(x)

Hyperbolic tangent tanh ex−e−x

ex+e−x
1 − f (x)2

Rectified linear unit relu
{

x if x > 0

0 if x ≥ 0

{
1 if x > 0

0 if x ≥ 0

Logistic sigmoid sig 1

1+e−x
f (x)(1 − f (x))
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X◦Y  (elementwise matrix multiplication) for the derivatives of the activation func-
tions and the Hadamard power function X◦Y (elementwise exponentiation) for mean 
squared error.

These adaptations allow our operator for automatic differentiation to train the 
weights for a neural network ( m = 4, h = 20, |L| = 3 ) within a recursive table 
(see Listing 10): We first initialise the weight matrices with random values (line 2) 
and then update the weights in each iterative step (line 4) using mean squared error 
(mwxh,who

(x) − yones)
◦2 (line 7).

Instead of relying on an operator for automatic differentiation, we can train a 
neural network by hand when applying the rules for automatic differentiation. With 
mean squared error, the loss is equal to the difference of labels and predicted prob-
abilities (Eq. 12). The factor 2 can be omitted when the learning rate � is doubled. 
To train the neural network for a given input vector, we have to backpropagate the 
loss and update the weights as follows:

(12)lho = 2 ⋅ (mwxh,who
(x) − yones),

(13)�ho = lho◦sig
�(aho) = lho◦aho◦(1 − aho),

(14)lxh = lho ⋅ w
T
ho
,
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Figure 7 shows the corresponding computational graph and Listing 11 the corre-
sponding code in SQL when the Hadamard product ( ◦ ) is exposed as SQL operation 
(**).

To process a batch of input tuples instead of a single one, the multiplications are 
applied on matrices instead of vectors. The multiplication during the last steps, the 
weight updates (Eqs. 16, 17), then sums up the delta for every tuple, so a simple 

(15)�xh = lxh◦sig
�(axh) = lxh◦axh◦(1 − axh),

(16)w�
ho

= who − � ⋅ aT
xh
⋅ �ho,

(17)w�
xh
= wxh − � ⋅ xT ⋅ �xh.

(sig(sig(x · wxh) · who)− yones)◦2

�◦�

− 2

sig yones

·
wohsig

·
whxx

aho

axh

lho

lho

δho
aTxhδholxh

δxh
xT · δxh

Fig. 7  Automatic differentiation for (mwxh ,who
(x) − yones)

◦2
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division by the number of tuples is needed to construct the average gradient. This is 
helpful when vectorising mini-batch gradient descent in Sect. 6.1.2.

6  Multi‑GPU gradient descent

This section explains our CUDA kernels for linear regression and neural networks, 
which one CPU worker thread starts once per GPU. We describe blocking and 
non-blocking algorithms so as not not to hinder faster GPUs from continuing their 
computation while waiting for the slower ones to finish. To synchronise multiple 
workers, we either average the gradient after each iteration or maintain local models 
as proposed by Crossbow [69]. We adapt this synchronisation technique to maxim-
ise the throughput of a single GPU as well. As a novelty, we implement learners at 
hardware level—each associated to one CUDA block—to maximise the throughput 
on a single GPU. Finally, we generate the kernels directly with LLVM to support 
lambda functions for model specification.

6.1  Kernel implementations

Developing code for NVIDIA GPUs requires another programming paradigm, as 
computation is vectorised to parallel threads that perform the same instructions 
simultaneously. Each GPU device owns one global memory (device memory) and an 
L2 cache. Core components are streaming multiprocessors with an attached shared 
memory (see Fig. 8) to execute specialised programs for CUDA devices (kernels). 

Shared Memory
48KB 64KB 128KB

64 Cuda Cores

...
Shared Memory

48KB 64KB 128KB

64 Cuda Cores

Number of Streaming Multiprocessors (SM): 28 68 80

L2-Cache 2.816MB 5.5MB 6MB

Device Memory 11GB 11GB 16/32GB

484GB/s 616GB/s 900GB/sBandwidth

NVIDIA GeForce GTX 1080 Ti RTX 2080 Ti Tesla V100

Main Memory

PCIe 3.0 x16 12 GB/s

Fig. 8  Simplified GPU architecture for NVIDIA GeForce GTX 1080 Ti (orange), RTX 2080 Ti (blue) 
and Tesla V100 (green): Each GPU transfers data via PCIe x16 from main-memory to its global/device 
memory. Multiple CUDA cores sharing the L1 cache (shared memory) are grouped to one streaming 
multiprocessor, its number is GPU specific. In-between lies the L2 cache
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In these kernels, every thread receives a unique identifier, which is used to deter-
mine the data to process. 32 threads in a bundle are called a warp, multiple warps 
form a block and threads inside a block can communicate through shared memory 
and interfere with each other. To interfere with other threads, shuffling can be used 
to share or broadcast values with one or more threads within a warp.

To off-load gradient descent iterations to NVIDIA GPUs, we generate special-
ised kernels. In detail, we have to map batches to blocks; we can vary the number 
of threads per block and explicitly cache values in shared memory. In the following 
sections, we describe our kernel implementations for gradient descent with linear 
regression and a fully-connected neural network, and we will introduce independent 
learners at block-size granularity.

6.1.1  Linear regression

As linear regression is not a compute-bound but a memory-intensive application, 
we initially transfer as much training data into device memory as possible. If data 
exceeds the memory and more GPUs are available for training, we will partition the 
data proportionally to multiple devices. Otherwise, we reload the mini-batches on 
demand.

Each thread handles one input tuple and stores the resulting gradient after each 
iteration in shared memory. Each iteration utilises all available GPU threads, where-
fore the size of a mini-batch must be greater or equal to the number of threads per 
block, to ensure that compute resources are not wasted. When the batch size is larger 
than a block, each thread processes multiple tuples and maintains a thread-local 
intermediate result, which does not require any synchronisation with other threads. 
After a mini-batch is processed, shuffling operations summarise the gradient to com-
pute the average for updating the weights (tree reduction).

6.1.2  Neural network

Our initial approach was to adapt the gradient descent kernel for linear regression 
to train a neural network and to spread each tuple of a batch to one thread. As train-
ing neural networks is based on matrix operations, we rely on libraries for basic 
linear algebra subprograms for CUDA devices (cuBLAS2), which provide highly 
optimised implementations. Our implementation uses the cuBLAS API for all oper-
ations on matrices or vectors. For example, the forward pass in a neural network 
uses matrix-vector multiplications (cublasDger()) for a single input tuple and, 
when a mini-batch is processed, matrix-matrix multiplications respectively (cubl-
asDgemm()). To apply and derive the activation function, handwritten kernels are 
used that vectorise over the number of attributes. These kernels plus the library calls 
plus handwritten code build the foundation for parallelising to multiple GPUs.

2 https:// docs. nvidia. com/ cuda/ cublas

https://docs.nvidia.com/cuda/cublas
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6.1.3  Multiple learners per GPU

To utilise all GPU threads even with small batch sizes, we implement multiple 
workers on a single GPU. These are called learners [69] and ensure a higher 
throughput. Crossbow offers a coarse-grained approach as every learner launches 
multiple kernels, which limits its overall number. By contrast, our light-weight 
approach launches only one instance of a fine-grained kernel for one entire GPU. 
This enables full utilisation of the GPU as the number of learners could be much 
higher.

In our implementation (see Fig. 9), each learner corresponds to one GPU block. 
We can set the block size adaptively, by which the number of learners results. Con-
sequently, one learner works on batch sizes of at least one warp, that is the mini-
mum block size with 32 threads, or multiple warps. Hence, the most learners that 
are allowed is the number of warps that can be processed per GPU.

After each learner has finished its assigned batches, the first block synchronises 
with the other ones to update the global weights. But for multi GPU processing as 
well as for multiple learners per GPU, we need to synchronise each unit.

6.2  Synchronisation methods

As we intend to run gradient descent in parallel on heterogeneous hardware, we have 
to synchronise parallel gradient descent iterations. Based on a single-threaded naive 
gradient descent implementation, we propose novel synchronisation methods to 
compare their performance to existing ones and benchmark different hardware.

The naive implementation uses a constant fraction of its input data for validation 
and the rest for training. The training dataset is split into fixed-sized mini-batches. 
After a specified number of mini-batches but no later than after one epoch when 
the whole training set has been processed once, the loss function is evaluated on 
the validation set and the current weights. The minimal loss is updated and the next 
epoch starts. We terminate when the loss falls below a threshold lstop or a maximum 
number of processed batches ctrmax . Also, we terminate if the loss has not changed 
within the last 10 iterations.

Fig. 9  Multiple learners per 
GPU: Each block corresponds to 
one learner, each learner main-
tains local weights �local and 
the difference �local to the global 
weights � . Each input tuple is 
stored in device memory and is 
scheduled to one GPU thread
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Based on the naive implementation, this section presents three parallelisation 
techniques, a blocking but synchronised one and two using worker threads with mul-
tiple local models or only one global one.

6.2.1  Synchronised iterations

At the beginning of each synchronised iteration, we propagate the same weights 
with an individual mini-batch to the processing unit. After running gradient descent, 
the main worker collects the calculated gradients and takes their average to update 
the weights.

Algorithm  4 shows this gradient descent function, taking as input the labelled 
dataset X, a learning rate � , the batch size n and the parameter ctrmax that limits the 
number of iterations. In each iteration, multiple parallel workers pick a mini-batch 
and return the locally computed gradient. Afterwards, the weights are updated. 
For simplicity, the validation pass is not displayed: When the calculated loss has 
improved, the minimal weights together with the minimal loss are set and terminate 
the computation when a minimal loss lmin has been reached.

When synchronising a global model after each iteration, workers who may have 
finished their mini-batches earlier, are idle and waiting for input (see Fig. 10a). To 
maximise the throughput, independent workers have to fetch their mini-batches on 
their own. These independent workers either require local weights to be synchro-
nised frequently (see Fig. 10c) or update global weights centrally (see Fig. 10b).

6.2.2  Worker threads with global updates (bulk synchronous parallel)

In Algorithm 5, we see worker threads that fetch the next batch independently and 
update a global model. Each worker increments a global atomic counter as a batch 
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identifier and selects the corresponding batch consisting of the attributes and the 
labels. The current weights are used to compute the gradient; afterwards, the weights 
are updated globally. Besides, the first thread is responsible for managing the mini-
mal weights. Assuming a low learning rate, we suppose the weights are changing 
marginally and we omit locks similar to HogWild [70]. Otherwise, the critical sec-
tion (line 5)—gradient calculation and weights update—has to be locked, which 
would result in a single-threaded process as in Algorithm 4.

6.2.3  Worker threads with local models (model average)

To overcome race conditions when updating the weights, we adapt local models 
known from Crossbow [69] to work with worker threads. Crossbow adjusts the 
number of parallel so-called learners adaptively to fully utilise the throughput on 

Time

W
or
ke
rs

w0 w1 w2

B0 B1

B2 B3

B4 B5

B7 B8

(a) Synchronised threads

Time

W
or
ke
rs

w0 w1 w2w3 w4

B0 B1

B2 B3

B4 B5 B6

B7 B8 B9

(b) Global updates

Time

W
or
ke
rs

w0 w1 w2

B0 B1
c11 c12

B2 B3
c21 c22

B4 B5 B6
c41 c42 c43

B7 B8 B9
c51 c52 c53

(c) Local models

Fig. 10  Scheduling mini-batches on four different workers: a shows worker threads whose weights are 
synchronised globally after each iteration and whose averaged gradient is used to update the global 
weights w; workers are idle when others have still not finished. b shows worker threads that update 
weights globally without any synchronisation; each worker is responsible for fetching the next batch on 
its own. To overcome race conditions, the worker threads in (c) maintain their local model that is syn-
chronised lazily when every worker is done with at least one iteration
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different GPUs. Each learner maintains its local weights and the difference from 
the global weights. A global vector variable for every learner t called corrections 
�t stores this difference, divided by the number of all learners. In each iteration, the 
weights are updated locally and these corrections are subtracted. After each itera-
tion, the corrections of all learners are summed up to form the global weights.

Algorithm 6 shows its adaption for worker threads. The main thread manages the 
update of the global model (line 11) that is the summation of all corrections. The 
critical section now consists of the computation of the corrections (lines 7-9) only, 
so the gradient can be computed on multiple units in parallel.

6.3  JIT compiling to GPU

The normal way to use the CUDA interface is to write the CUDA code, which is 
C++ with additional language elements to support kernel declarations. The com-
piled CUDA code can be invoked from the host as a special function invocation 
through the CUDA API. With a just-in-time architecture, which compiles the GPU 
code, one can keep the advantages of modularisation but also allow for more opti-
misations to take place during compile time. Similar to gradient computation on 
the CPU, the lambda function can be passed directly to customised model-specific 
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kernels as it generates the gradient of a user-defined model function during compile 
time without impairing query time.

6.3.1  LLVM NVPTX interface

LLVM [71] is a framework that allows for just-in-time compilation via an interme-
diate representation in Static Single Assignment (SSA) form also called LLVM IR. 
There are two ways of using LLVM for generating code for GPUs (see Fig. 11). One 
way is to use the API that NVIDIA itself provides called libNVVM.3 libNVVM takes 
NVVM IR,4 which is based on LLVM IR, and compiles it to PTX,5, an assembly 
language for NVIDIA GPUs, which can subsequently be run on the GPU. A dis-
advantage of this approach to using LLVM with CUDA is that the LLVM version 
NVVM IR is based on is older than the official version. The current NVVM IR is 
based on LLVM 7.0.1, while the latest version as of now is 12.0.1.6

The alternative is using LLVM directly for generating LLVM IR. Using the 
NVPTX7 backend, we can generate PTX, which can be run on the GPU. This is the 
approach we can take to reuse the Umbra IR to LLVM IR backend to have a high-
level API for our code generation.

Fig. 11  Different existing paths of code generation for NVIDIA GPUs and how the translation from one 
layer to the next happens. cubin is the binary format loadable by the NVIDIA driver

3 https:// docs. nvidia. com/ cuda/ libnv vm- api/ index. html.
4 https:// docs. nvidia. com/ cuda/ nvvm- ir- spec/ index. html.
5 https:// docs. nvidia. com/ cuda/ paral lel- thread- execu tion/ index. html.
6 https:// lists. llvm. org/ piper mail/ llvm- annou nce/ 2021- July/ 000093. html.
7 https:// llvm. org/ docs/ NVPTX Usage. html.

https://docs.nvidia.com/cuda/libnvvm-api/index.html
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://lists.llvm.org/pipermail/llvm-announce/2021-July/000093.html
https://llvm.org/docs/NVPTXUsage.html
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6.3.2  LLVM NVIDIA specifics

Using LLVM for NVIDIA GPU code generation introduces some specifics. In C++ 
we have a special keyword __shared__ to mark memory as being shared, while 
the NVPTX backend is using a separate address space as can be seen in Fig. 12.

Furthermore, there are functions in LLVM IR specific to CUDA. For exam-
ple in C++, the thread id in one dimension is saved as a special built-in variable8 
called threadIdx.x, while in LLVM IR the thread id can be retained via a func-
tion called @llvm.nvvm.read.ptx.sreg.tid.x, which gets subsequently 
mapped onto a special register called %tid.x in PTX again.

6.3.3  CUDA fast math optimizations

Previously, we only looked at optimisations that happen on an LLVM IR level. In a 
second step, we can additionally consider how to optimise the PTX that is generated 
from our LLVM IR. Floating-point operations normally cannot change in ordering 
or kind by optimisation. However, we can relax these rules and thus allow the opti-
miser to reorder and replace floating-point operations.

To allow this relaxation, LLVM IR provides fast math flags9 that allow the 
specification of how the optimiser is allowed to modify the order of floating-point 
operations. The most interesting two flags are reassoc and contract. reas-
soc means that floating-point operations can be treated as associative. This is part 
of LLVM IR already, since operations are reordered by the optimiser. contract 
allows to combine multiple floating-point operations. There are no combined float-
ing-point operations in LLVM IR, so setting this flag is just information for the 
specific backend behind LLVM (in our case, of course, NVPTX) to allow for this 
optimisation.

Figure 14a shows the PTX code generated from the LLVM IR shown in Fig. 13. 
Here we do not have any fast math flags enabled. Highlighted in blue are all the 
floating-point calculations that match their LLVM IR equivalents roughly. For com-
parison, Fig. 14b shows the resulting PTX from Fig. 13 when the contract fast 
math flag is set. We see indeed that four floating-point operations, two multiplies 

Fig. 12  Comparison of the declaration of shared memory in C++ and LLVM IR. addrspace(3) indi-
cates the pointer as pointing to memory in address space 3, which the NVPTX backend reserves for 
shared memory

8 https:// docs. nvidia. com/ cuda/ cuda-c- progr amming- guide/ index. html.
9 https:// llvm. org/ docs/ LangR ef. html.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://llvm.org/docs/LangRef.html
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(mul.rn.f64) and two adds (add.rn.f64), have been fused together to two 
fused-multiply-and-add (fma.rn.f64) operations.

6.3.4  CUB

Another feature that is used by our kernels is a library called CUB.10 CUB provides 
primitives to simplify block-wide synchronisations to synchronise all threads cur-
rently running in a kernel. This can be used to efficiently execute tasks by using all 
currently available threads within a kernel. CUB facilitates this by offering primi-
tives utilising some or all available threads. CUB is a header-only library, so there is 
no code to link. To use the features of CUB—for example, to sum up all the correc-
tions in our sum_corrections kernel—we create a pre-compiled LLVM mod-
ule to make this primitive available to be used by our kernel.

Fig. 13  Optimized LLVM IR of reverse mode automatic differentiation of a linear model with three 
weights and mean squared error as loss function. Red lines mark GPU specific operations to determine 
memory positions, blue lines mark loading operations and brown lines mark storing operations

10 https:// nvlabs. github. io/ cub/.

https://nvlabs.github.io/cub/
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6.3.5  WMMA

As a downside of cuBLAS, it cannot be part of the JIT compilation, since the differ-
ent functions are called by the host and not on the GPU. Beginning with the Volta 
architecture, NVIDIA integrated hardware acceleration of matrix operations in the 

(a) (b)

Fig. 14  Optimized PTX generated by the LLVM IR a without and b with enabling the fast math con-
tract flag

Table 2  Some supported dimensions of A (m × k) , B (k × n) and C (m × n) for performing C = A × B on 
the tensor cores via the WMMA API. tf32 is similar to a normal 32 bit float, but with 10 bit instead 
of 23 bit precision

__half is a 16 bit floating-point type

A type B type C type m n k

__half __half __half 16 16 16
tf32 tf32 float 16 16 8
double double double 8 8 4
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form of dedicated tensor cores.11 We can use tensor cores for array operations within 
gradient descent while still allowing for just-in-time compilation.

WMMA is an CUDA API to access the tensor cores since the Volta architec-
ture.12 Instead of allowing for arbitrary matrix computations, WMMA only supports 
matrix-matrix multiplication of specific sizes depending on the type.

Table 2 shows some of the supported dimensions for different floating-point types 
available in CUDA. The API works by loading data into matrix fragments. Those 
fragments can be seen as special registers that hold the data for the tensor cores. 
After loading data into those fragments, we can execute the multiplication and 
store the result from a fragment into memory again. The WMMA instructions 
block all the threads in a warp. Therefore we can have one matrix multiplication 
per warp at the same time. Hence, one matrix multiplication per block as we use the 
warp size as block size.

For our simple example by Derakhshan et al. [30] with four weights, we can cal-
culate the model or derivation for more than one tuple by loading the data in the 
appropriate shape into fragment. Examples with bigger dimensions are possible 
to be mapped onto WMMA because matrix multiplication is generally decompos-
able, for example, via Strassen’s algorithm [72].

7  Evaluation

This section presents the evaluation of the operators in Umbra, in detail the perfor-
mance increase through automatic differentiation in Umbra and code-generation for 
GPU, and the performance of our fine-grained learners on hardware level.

7.1  Automatic differentiation in umbra

Using synthetic data, we first compare three CPU-only approaches to compute 
batch gradient descent (the batch size corresponds to the number of tuples) on a 
linear model within SQL: Recursive tables with either manually or automatically 
derived gradients, and a dedicated (single-threaded) operator. All experiments were 
run multi-threaded on a 20-core Ubuntu 20.04.01 machine (Intel Xeon E5-2660 v2 
CPU) with hyper-threading, running at 2.20 GHz with 256 GB DDR4 RAM.

Figure 15 shows the compilation and execution time depending on the number of 
involved attributes. As we see, automatically deriving the partial derivatives speeds 
up compilation time, as fewer expressions have to be compiled, as well as execution 
time, as subexpressions are cached in registers for reuse. This performance benefit 
is also visible when the batch size, the number of iterations or the number of threads 
is varied (see Figs. 16, 17). Furthermore, we observe the approach using recursive 

11 https:// www. nvidia. com/ en- us/ data- center/ volta- gpu- archi tectu re/.
12 https:// www. nvidia. com/ en- us/ data- center/ volta- gpu- archi tectu re/.

https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
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tables computes aggregations in parallel, which accelerates computation on many 
input tuples with each additional thread.

The implemented derivation rules for automatic differentiation also allow 
deriving the gradient for arbitrary loss functions. Therefore, we also tested two 
different loss functions for linear regression, namely mean squared error (MSE, 
Eq. 2) and mean squared logarithmic error (RMSLE, Eq. 9). Figure 18 shows that 
the choose of the loss function does not influence the runtime significantly.

 Using a recursive table, we can also solve logistic regression in SQL (see List-
ing 12). Using the sigmoid function (Eq. 18), we know its derivative (see Table 1), 
which we can use for numeric differentiation:

The evaluation in Fig.  19 shows similar results as for linear regression, although 
function calls for the sigmoid function slowed down the runtime especially when 
derived manually.

To benchmark training a neural network, we are using the Fisher’s Iris flower 
dataset [73] and a fully connected, two-layered neural network. In this experi-
ment, we rather focus on the performance characteristics of the operator for auto-
matic differentiation embedded in relational algebra than on the quality of differ-
ent models. Figure 20 shows the compilation and execution time when training 
the neural network depending on the size of the hidden layer. As the size of the 
hidden layer depends on the weight matrices created at runtime, it does not affect 
the compile time. Whereas the runtime directly depends on the number of opera-
tions involved in matrix multiplications and thus increases with the size of the 
matrices. When we compare automatic differentiation to manually derived gra-
dients, we applied the backpropagation rules by hand. So fewer operations were 
executed when using automatic differentiation, which currently computes the 
derivative for every variable involved. Hence, both approaches show similar per-
formance when varying the size of the hidden layer, the batch size, the number of 

(18)m
�
(�) = sig(�T ⋅ �) =

1

1 + e−�
T
⋅�

.



238 Distributed and Parallel Databases (2022) 40:205–259

1 3

iterations and threads (see Fig. 21). Nevertheless, automatic differentiation elimi-
nates the need for manually derived gradients and nested subqueries.

Figure 22 displays further experiments such as varying the number of hidden 
layers and the training time depending on the batch size for one epoch, so when 
all tuples have been processed once, using the MNIST dataset. As expected, 
the runtime increases with additional layers and the training time for one epoch 
decreases with a higher batch size. We discuss the influence of the batch size on 
the statistical efficiency in Sect. 7.

Fig. 19  Logistic regression: Performance with increasing number of attributes (100 iterations, 
10, 000/100, 000 tuples), increasing number of tuples (64 attributes, 100 iterations, 8 threads), iterations 
(64 attributes, 100, 000 tuples, 8 threads) or threads (64 attributes, 100 iterations, 100, 000 tuples)
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7.2  Linear regression (GPU)

We benchmark linear regression with synthetic data and the New York taxi dataset, 
and a feed-forward neural network with a single hidden layer for image recognition 
(see Table 3). We take 2.65 GiB of the New York taxi dataset13 (January 2015), on 
which we perform linear regression to forecast the taxi trip duration from the trip’s 
distance and bearing, the day and the hour of the ride’s beginning (four attributes). 
We tested on servers with four Intel Xeon Gold 5120 processors, each with 14 CPUs 
(2.20 GHz) running Ubuntu 20.04.01 LTS with 256 GiB RAM. Each server is con-
nected to either four GPUs (NVIDIA GeForce GTX 1080 Ti/RTX 2080 Ti) or one 
NVIDIA Tesla V100-PCIE-32GB.

We measure the performance and the quality of the different parallelisation mod-
els on the CPU as well as the GPU according to the following metrics: 

1. Throughput measures the size of processed tuples per time. It includes tuples used 
for training as well as for validation.

2. Time-to-loss, similarly to time-to-accuracy [74] for classification problems, meas-
ures the minimal loss on the validation dataset depending on the computation 
time.

3. Tuples-to-loss describes how many tuples are needed to reach a certain minimal 
loss. In comparison to time-to-loss, it is agnostic to the hardware throughput and 
measures the quality of parallelisation and synchronisation methods.

We perform gradient descent with a constant learning rate of 0.5 to gain the opti-
mal weights. After a predefined validation frequency, every 3,000 batches, the cur-
rent loss is computed on a constant validation set of 20 % the size of the original 
one. We vary the hyper-parameters of our implementation, i.e., the batch size and 
the number of workers. A thread records the current state every second to gather 
loss metrics.

7.2.1  Throughput vs. statistical efficiency

To measure the throughput for linear regression on different hardware, we consider 
batch sizes of up to 100 MiB. We compare the performance of our kernels to that 
when stochastic gradient descent of the TensorFlow (version 1.15.0) library is called 
(see Fig. 23).

The higher the batch size, the better the throughput when running gradient 
descent on GPUs as all concurrent threads can be utilised. Hardware-dependent, 
the maximal throughput converges to either 150  GiB/s (GeForce GTX  1080  Ti), 
250  GiB/s (GeForce RTX 2080  Ti) or more than 300  GiB/s (Tesla V100). As 
developed for batched processing, our dedicated kernels (see Fig. 23a) can exploit 

13 https:// s3. amazo naws. com/ nyc- tlc/ trip+ data/ yellow_ tripd ata_ 2015- 01. csv.

https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2015-01.csv
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available hardware more effectively than the Python implementation (see Fig. 23b). 
As the latter calls stochastic gradient descent, this excels on better hardware only 
when a larger model has to be trained.

Nevertheless, training with large batch sizes does not imply statistical effi-
ciency in terms of the volume of processed data that is needed for convergence 
(see Fig. 24a) and the lowest reachable minimal loss (see Fig. 24b). For that reason, 
to allow the highest throughput even for small batch sizes, we implement multiple 
learners per GPU.

7.2.2  Multiple learners per GPU

As the GPU is only fully utilised when the number of concurrently processed tuples 
is greater or equal to the number of parallel GPU threads, we benchmark multiple 
learners per GPU. As each learner corresponds to one GPU block consisting of a 
multiple of 32 threads, our implementation allows the highest throughput for every 
batch size, as a multiple of the block size. Therefore, we vary the number of threads 
per block (equal to a learner) between 32 and 1,024 and measure the throughput 
dependent on the batch size in multiples of 32 threads.

The observation in Fig. 25 corresponds to the expectation that a small number of 
threads per learner allows a higher throughput for small batch sizes. When the batch 
size is equal to a multiple of the chosen number of threads, the throughput reaches a 
local maximum. Otherwise, the GPU is underutilised. These local maxima are vis-
ible as spikes in all curves except for 32 threads per block, as we increase the batch 
size by 32 tuples. Nevertheless, on all devices, the throughput soon converges at the 
possible maximum, which shows the efficiency of learners in the granularity of GPU 
warps.

7.2.3  Scalability

When running gradient descent in parallel, we benchmark the four implementations 
for synchronising weights: no synchronisation with global updates (global updates), 
maintaining local models either with locking of the critical section (local models 
(locks)) or without locking (local models (dirty)), or synchronised updates that block 
until every worker has finished (synchronised (blocking)). We ran the experiments 
on the CPU as well as the GPU.

When parallelising on the CPU, each additional thread allows a linear speed-up 
when no synchronisation takes place (see Fig. 26a). Maintaining local models costs 

Table 3  Datasets used with 
linear regression and a neural 
network respectively

#attr. #training #validation

New York Taxi 4 + 1 61,664,460 15,416,115
Synthetic 99 + 1 10 10
MNIST 784 + 1 60,000 10,000
Fashion-MNIST 784 + 1 60,000 10,000
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additional computation time, which results in a lower throughput. Obviously, locks 
slow down the speed up, and blocking threads cause underutilisation.

Whereas parallelising for GPUs behaves differently (see  Fig.  26b/c): the larger 
the batch size, the higher the scale-up. This is obvious, as less synchronisation is 
necessary for larger batch sizes and the parallel workers can compute the gradients 
independently. Also on GPUs, the implementation without any synchronisation and 
global updates scales best, even though not as linearly as on CPUs. In all imple-
mentations, one additional GPU allows a noticeably higher throughput. Maintain-
ing local models requires inter-GPU communication of the local corrections to form 
the global weights, which decreases the performance significantly with the third 
additional device. To minimise this effect, the weight computation could be split up 
hierarchically.

7.3  Neural network (GPU)

To benchmark the feed-forward neural network, we perform image classification 
using the MNIST and Fashion-MNIST [75] dataset. We train the neural network 
with one hidden layer of size 200 to recognise a written digit (Fashion-MNIST: a 
piece of clothing) given as a single tuple representing an image with 784 pixels. 
We take 0.025 as learning rate, perform a validation pass every epoch and measure 
the throughput and the time to reach a certain accuracy (with the loss defined as the 
number of incorrectly classified tuples).

7.3.1  Throughput vs. statistical efficiency

Even though stochastic gradient descent using Keras (version 2.2.4) with Tensor-
Flow allows a higher bandwidth than for linear regression due to more attributes per 
tuple (see Fig. 27b), our implementations, which call the cuBLAS library, process 
tuples batch-wise, which results in a higher bandwidth. As training a neural net-
work is compute-bound involving multiple matrix multiplications, the throughput 
is significantly lower than for linear regression (see Fig. 27a), but allows a higher 
throughput, the larger the batch size.

As is the case for linear regression, training models with small batch sizes results 
in a higher accuracy (see  Fig.  28b). This once again makes the case for multiple 
learners per single GPU. Nevertheless, the larger the chosen batch size is, the faster 
training iterations converge (see Fig. 28a).

7.3.2  Scalability

The scalability of parallel workers computing backpropagation resembles the scal-
ability for training linear regression on GPUs: one additional worker increases the 
throughput, for any further workers, the inter-GPU communication decreases the 
runtime (see Fig. 29). For small batch sizes, training on two GPU devices has the 
best results, while for larger batch sizes, every additional device allows a higher 
throughput. 
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7.3.3  Time/tuples‑to‑loss

Regarding the time to reach a certain accuracy (see  Fig.  30), all implementa-
tions perform similarly when running on a single worker. As the MNIST dataset 
converges fast, adding a GPU device for computation has no significant impact. 
Whereas the Fashion-MNIST dataset converges slower, the higher throughput when 
training with an additional worker results in the minimal loss being reached faster. 
We train with a small batch size as it allows faster convergence. Hereby, a scale-up 
is only measurable when training with up to two devices.

7.4  Integration into umbra

We want to evaluate code generation for GPU into Umbra in several ways. We 
evaluate code-generation having multiple learners and the performance increase for 
matrix multiplication using WMMA.

7.4.1  Code‑generation: multiple learners

To investigate multiple learners per GPU, we want to compare the implementation 
generated by Umbra IR against the CUDA C++ implementation, which trains the 
taxi model. That way, we confirm that we reach a similar performance when using 
code-generation with Umbra IR.

Figure  31 compares three different versions of the Crossbow implementation, 
having 3328 workers, 32 threads per block, one batch per worker, 25199507 tuples 
on a single NVIDIA GTX 970. The CUDA C++ implementation corresponds to the 
Crossbow approach but prebuilt in C++ via CUDA. The naive implementation is a 
one-to-one translation of the CUDA C++ kernels into Umbra IR. Finally, the opti-
mised version builds upon the naive version by integrating optimisations like loop 
unrolling. For testing, we focus on the training part of Crossbow. As we can see, we 
come very close to the CUDA C++ implementation with our optimised solution.

7.4.2  WMMA

We want to evaluate whether the matrix multiplication of WMMA is more feasible 
than cuBLAS for training. Figure 32 shows the performance comparison of through-
put for the taxi model matrix multiplication using WMMA and cuBLAS with __
half as data type on a NVIDIA GeForce RTX 3050 Ti. The cuBLAS performance 
is worse than using doubles, which might be explained by the fact the cuBLAS is 
not working well with the __half type in this case. For the evaluation of the taxi 
model, we had to arrange the matrix in a specific way to maximise the number of 
tuples evaluated per tensor core invocation. Despite this rearrangement, we achieve 
a much higher throughput using WMMA.
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7.5  End‑to‑end analysis

Figure 33 compares the time needed to train one epoch (New York taxi data: 13 ⋅ 106 
tuples, MNIST: 6 ⋅ 104 tuples) within a complete machine learning pipeline in Python 

(a)

(b)

(c)

Fig. 30  Time-to-loss when training the neural network for the a MNIST and b Fashion-MNIST dataset 
with a batch size of 5 tuples (NVIDIA GeForce GTX 2080 Ti). For Fashion-MNIST, also tuples-to-time 
(c) is provided



254 Distributed and Parallel Databases (2022) 40:205–259

1 3

using Keras to a corresponding operator tree within the database system Umbra, either 
using a recursive table with a manually or automatically derived gradient or using an 
operator that off-loads to GPU. The pipeline consists of data loading from CSV, feature 
extraction (only for the New York taxi data) and normalisation either with NumPy or 
SQL-92 queries, and training. Measurements using the MNIST dataset were performed 
on a Ubuntu 20.04 LTS machine with four cores of Intel i7-7700HQ CPU, running at 
2.80 GHz clock frequency each and 16 GiB RAM. For the taxi data, a machine with 
Intel Xeon Gold 5120 processors, each with 14 CPUs (2.20 GHz) and 256 GiB RAM, 
was used.

We observe that much time is spent on data loading and preprocessing. These 
tasks are either no longer required if the data is already stored inside the database 
system, or can easily be processed in parallel pipelines. Furthermore, gradient 
descent using recursive tables showed comparable performance to library functions 
used, which is still outperformed by our operator that off-loads training to GPU.

8  Conclusion

This paper has created an in-database machine learning pipeline expressed in pure 
SQL based on sampling, continuous views and recursive tables. To facilitate gra-
dient descent, we proposed an operator for automatic differentiation and one for 

Fig. 31  Umbra integration
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gradient descent. The derivation rules allow deriving arbitrary models needed for 
training, for example, deep neural networks with multiple hidden layer. We used the 
operator for automatic differentiation for training within a recursive table in SQL. 
SQL provided flexibility as the iteration variable allows varying the learning rate or 
when accessing further tables for user-specific parameters. To off-load training to 
GPU units, we have implemented training algorithms as GPU kernels and fine-tuned 
learners at hardware level to increase the learning throughput. These kernels were 
integrated inside the code-generating database system Umbra. In comparison to 
handwritten derivatives, automatic differentiation as a database operator accelerated 
both the compile time and the execution time by the number of cached expressions. 
Furthermore, our evaluation benchmarked GPU kernels on different hardware, as 
well as parallelisation techniques with multiple GPUs. The evaluation has shown 
that GPUs traditionally excel the bigger the chosen batch sizes, which was only 
worthwhile when a slow-converging model was being trained. In addition, larger 
batch sizes interfered with statistical efficiency. For that reason, our fine-tuned learn-
ers at hardware level allowed the highest possible throughput for small batch sizes 
equal to a multiple of a GPU warp, so at least 32 threads. Our synchronisation tech-
niques scaled up learning with every additional worker, even though this was not as 
linear for multiple GPU devices as for parallel CPU threads. Finally, our end-to-end 
machine learning pipeline in SQL showed comparable performance to traditional 
machine learning frameworks. In the future, translation from Python into SQL could 
increase the acceptance for in-database machine learning.

(a)

(b)

Fig. 33  End-to-end analysis of a machine learning pipeline: a linear regression (New York taxi, 64 tuples 
per batch and b a neural network (MNIST, stochastic gradient descent)
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