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Abstract
The problem of natural language processing over structured data has become a 
growing research field, both within the relational database and the Semantic Web 
community, with significant efforts involved in question answering over knowledge 
graphs (KGQA). However, many of these approaches are either specifically targeted 
at open-domain question answering using DBpedia, or require large training data-
sets to translate a natural language question to SPARQL in order to query the knowl-
edge graph. Hence, these approaches often cannot be applied directly to complex 
scientific datasets where no prior training data is available. In this paper, we focus 
on the challenges of natural language processing over knowledge graphs of scien-
tific datasets. In particular, we introduce Bio-SODA, a natural language process-
ing engine that does not require training data in the form of question-answer pairs 
for generating SPARQL queries. Bio-SODA uses a generic graph-based approach 
for translating user questions to a ranked list of SPARQL candidate queries. Fur-
thermore, Bio-SODA uses a novel ranking algorithm that includes node central-
ity as a measure of relevance for selecting the best SPARQL candidate query. Our 
experiments with real-world datasets across several scientific domains, including the 
official bioinformatics Question Answering over Linked Data (QALD) challenge, 
as well as the CORDIS dataset of European projects, show that Bio-SODA outper-
forms publicly available KGQA systems by an F1-score of least 20% and by an even 
higher factor on more complex bioinformatics datasets. Finally, we introduce Bio-
SODA UX, a graphical user interface designed to assist users in the exploration of 
large knowledge graphs and in dynamically disambiguating natural language ques-
tions that target the data available in these graphs.
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1 Introduction

The problem of natural language processing over structured data has gained signifi-
cant traction, both in the Semantic Web community—with a focus on answering 
natural language questions over RDF graph databases [1–3]—and in the relational 
database community, where the goal is to answer questions by finding their seman-
tically equivalent translations to SQL [4–7]. Significant research efforts have been 
invested in particular in open-domain question answering over knowledge graphs. 
These efforts often use the DBpedia and/or Wikidata knowledge bases, that are com-
posed of structured content from various Wikimedia projects such as Wikipedia. A 
growing ecosystem of tools is therefore becoming available for solving subtasks of 
the KGQA problem, such as entity linking [8–11] or query generation [12]. How-
ever, most of these tools are specifically targeted at question answering over DBpe-
dia [13], not having been applied to other contexts, such as for scientific datasets.

On the one hand, encouraged by the recent success of machine learning methods, 
several new benchmarks for training and evaluating KGQA systems have been pub-
lished [14, 15]. On the other hand, most of the existing datasets are synthetic (i.e., 
not based on real query logs) and generally limited to DBpedia or Wikidata, which 
may not be representative of knowledge graphs for scientific datasets.

For example, one of the major question answering datasets over DBpedia, LC-
Quad [14], as well as its updated version, LC-Quad 2.0 [15], include only simple 
multi-fact questions that connect at most two facts. In other words, these queries 
cover at most two or three triple patterns, with a query graph spanning a maximum 
of two hops, whereas real-world questions tend to be much more complex. In par-
ticular, a study of SPARQL query logs [16] across multiple knowledge graphs, 
including DBpedia, has shown that a significant fraction of real-world queries have 
10 triple patterns or more. It therefore remains unclear whether existing training sets 
can serve as representative for real-world natural language processing engines over 
knowledge graphs in general. All in all, data access and retrieval remain challenging 
for domain experts who are not familiar with structured query languages, nor with 
the data models of each scientific dataset that they use.

To illustrate the general problem of natural language processing over knowl-
edge graphs, consider the simple data model in Fig. 1. Here we see that a drug 
could be a possible disease target for asthma (left branch), as well as potentially 
having side effects such as triggering asthma symptoms (right branch). Now 
consider the following natural language question: “Which drugs are used for 
asthma?”. Note that our knowledge graph has no concept or property called used 
for. Hence, this question cannot be easily translated without relying on external 
knowledge (e.g. training data), given that used for cannot be directly mapped to 
either of the two properties (possibleDiseaseTarget or sideEffect) shown in the 
figure. However, node centrality metrics, such as the PageRank score of nodes 
in the knowledge graph, can help capture “common sense” knowledge, e.g., that 
asthma is more commonly a Disease, rather than a Side Effect.

As a step towards bridging the current gap in natural language processing 
for knowledge graphs of scientific datasets, we introduce Bio-SODA, a system 
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designed to answer natural language questions across knowledge graphs where 
no prior training data is available. Bio-SODA relies on a generic graph-based 
approach in order to translate natural language questions into SPARQL queries. 
Furthermore, Bio-SODA is designed to compensate for incompleteness in the 
data—either due to missing schema information or, to some extent, due to miss-
ing labels. Although these situations should not occur when following ontology 
engineering best practices for representing data in RDF, our experience in work-
ing with real-world datasets shows that these problems are frequent in practice.

We make our prototype implementation available open-source1. We also make 
available a live demo of Bio-SODA online2, where each of the datasets considered 
in this paper can be queried. The prototype enables both keyword search, as well 
as full question answering in English. We chose bioinformatics as our primary tar-
get domain, motivated by the rapid growth of publicly available RDF data in this 
scientific domain. Specifically, around 8% of the Linked Open Data Cloud origi-
nates from the Life Sciences [18]. For the purpose of evaluating our system, we use 
several real-world datasets stemming from different domains. For example, we use 
the last bioinformatics question answering challenge released as part of the official 
Question Answering on Large Databases (QALD) series, namely the QALD4 bio-
medical task [17]. Importantly, to-date there is no sufficiently large training data-
set of questions and corresponding SPARQL queries to enable the use of machine 
learning approaches for end-to-end Question Answering in the biomedical field. 

Fig. 1  Illustrative data model, simplified from the QALD4 benchmark datasets [17]. Consider the fol-
lowing question: “Which drugs are used for asthma?”. In the QALD4 dataset, “asthma” appears as both 
a disease instance (shown in green), as well as a side effect (shown in red). The second interpretation 
describes drugs that can trigger asthma symptoms. Therefore, it is the opposite of the user’s intended 
question. However, the predicate used for in the question cannot be easily linked to either of the proper-
ties indicated through arrows in the image. Due to ambiguity, the question is difficult to translate cor-
rectly in the absence of external knowledge, without relying on training data (inferring that used for 
implies drug targeting disease) (Color figure online)

1 Code at https:// github. com/ anazh aw/ Bio- SODA
2 See demo at http:// bioso da. expasy. org/

https://github.com/anazhaw/Bio-SODA
http://biosoda.expasy.org/
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Finally, to demonstrate the generalizability of Bio-SODA to other domains, we also 
apply our system to an entirely different context, outside bioinformatics, namely on 
the CORDIS dataset describing European Union (EU) funded research projects3. 
This dataset is also used in the EU-project INODE (Intelligent Open Data Explora-
tion) [19].

This paper, which is an extended version of [20], makes the following 
contributions:

• We introduce Bio-SODA—a novel natural language processing engine over 
knowledge graphs that does not require prior training data (question-answer 
pairs) for translating natural language questions into SPARQL.

• We define a novel ranking algorithm for selecting the best automatically gener-
ated SPARQL statements in response to a given natural language question. The 
ranking algorithm combines syntactic and semantic similarity, as well as node 
centrality in the knowledge graph. Many existing question answering systems 
either rely on simple metrics for ranking, such as the length of the answer query 
graph [6], or require extensive training data in order to learn a ranking function 
[21]. To the best of our knowledge, our approach is the first to take into account 
all three factors (syntactic and semantic similarity, as well as node centrality) for 
ranking queries.

• Our experiments on various real-world datasets show that Bio-SODA outper-
forms state-of-the-art KGQA systems by 20% on the F1-score using the official 
QALD4 biomedical benchmark and by an even higher factor on the more com-
plex bioinformatics dataset.

• Finally, in addition to the work presented in the conference version of this paper 
(see [20]), here we introduce Bio-SODA UX, a prototype graphical user interface 
enabling users to interact with knowledge graph data and disambiguate natural 
language questions over the data dynamically; we demonstrate through selected 
use cases how the interface can assist users in exploring the available data and in 
finding the information of interest from the underlying knowledge graph.

The paper is structured as follows: Sect. 2 places our contribution in the context of 
the related work. In Sect. 3 we introduce some of the challenges of natural language 
processing over RDF-based knowledge graphs. In Sect. 4 we explain the high level 
architecture of Bio-SODA through a concrete example from the biomedical domain. 
In Sect. 5 we present the detailed system architecture of Bio-SODA followed by a 
description of the Bio-SODA UX user interface in Sect. 6. Next, we describe the 
datasets used for evaluation, their specific challenges and the results obtained, in 
Sect. 7. In Sect. 8 we discuss lessons learned from building a natural language pro-
cessing system for real-world domain datasets. We outline directions for future work 
in Sect. 9.

3 https:// cordis. europa. eu/ proje cts

https://cordis.europa.eu/projects
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2  Related work

The problem of natural language processing and question answering over struc-
tured data has been well-studied in recent years, with a growing number of pub-
lished systems, particularly in open-domain question answering. Recent surveys 
on natural language interfaces to databases include [22, 23]. However, in this 
paper we focus on natural language interfaces to RDF graph databases or RDF-
based knowledge graphs. Natural language interfaces to relational databases are 
outside the scope of this paper.

In parallel, the biomedical field has seen a growth of dedicated systems for 
question answering. Examples include GFMed [24] and Pomelo [25] – the two 
highest ranked systems in the QALD4 biomedical challenge – as well as more 
recent systems [26]. However, these are generally considered expert systems, 
with lower generalizability to other domains, given that they extensively rely on 
manually handcrafted rules and domain expertise.

Our work aims to bridge the gap between the two parallel efforts by solving 
the common case in a domain-independent manner. For this, Bio-SODA relies 
on a generic graph-based approach in order to generate a ranked list of candidate 
SPARQL queries from a given question. We enable the addition of custom rules 
only for special cases when needed.

Many recent KGQA systems [1, 3] have been evaluated using the LC-Quad 
benchmark of 5000 questions over DBpedia [14]. Although this benchmark is an 
important step forward, particularly for enabling machine learning approaches, it 
does not include complex multi-hop questions, which makes it unclear how the 
results would generalize to this case. For example, the current publicly available 
implementation of the SPARQL query generation system SQG [12], would not 
work for complex question answering on a new knowledge graph without signifi-
cant changes to the code base, as it targets question answering over DBpedia and 
more specifically in the format required by the LC-Quad benchmark.

More recent KGQA systems, such as [3, 27], support multiple knowledge 
graphs, but are limited to queries with a complexity of at most three triple pat-
terns. Similarly, existing end-to-end QA systems, based on machine learning 
approaches, such as [28], can only handle simple questions. These approaches 
have the added drawback that they only generate a single answer, as opposed to 
multiple candidates. Furthermore, end-to-end approaches suffer from the lack of 
explainability, which makes it challenging for users to validate the correctness of 
the result. Explainability in this context has therefore become an active area of 
research, with solutions proposed including translating back structured queries 
into natural language sentences [29–31] or summarizing the entities in the results 
[32].

Disambiguation is one of the major tasks of question answering systems. One 
possible solution for this is to limit the interface to a controlled natural language 
and involve the user in constructing questions from the available building blocks. 
Sparklis [33] is a query building system that enables answering controlled natural 
language questions over knowledge graphs out-of-the-box. However, this process 
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is manual and therefore time-consuming, which makes it less convenient than a 
true natural language interface.

One of the systems closest to ours is the KG-agnostic WDAqua-core1 [1]. The 
system supports multiple knowledge bases in several languages. However, the 
system is only available as a demo. Although the authors mention that node rel-
evance can in principle be taken into account for ranking, it is not clear whether the 
approach was used in the evaluation or whether the ranking function was learned 
based on training data. An updated version of this question answering system, QAn-
swer, is presented in [34], however this system is also limited to support at most 3 
triple-pattern queries.

3  Challenges of natural language processing over knowledge graphs

In this section we summarise some of the challenges of natural language processing 
over knowledge graphs, focusing on scientific knowledge graphs, which shape the 
architecture of the Bio-SODA system (described in Sects. 4 and 5).

• Lack of training data.
  For many scientific knowledge graphs there is no sufficiently long and diverse 

log of questions and their corresponding queries in order to derive a representa-
tive training set for a machine learning-based solution. So far, existing training 
corpora have proven costly to construct [14], with the added drawback that any 
semi-automatically generated dataset risks compiling a set of question-answer 
pairs that are non-representative for the information needs of real users of the 
KGQA system, e.g. domain experts.

• Rule-based approaches perform well, but are costly to build and maintain.
  So far, state-of-the-art solutions for question answering over generic RDF-

based knowledge graphs have been mostly rule-based systems, relying on manu-
ally handcrafted rules. For example, GFMed [24] and Pomelo [25], the top 2 
ranked systems in the QALD4 biomedical challenge, have achieved very good 
results in the challenge, but at the cost of very little generality. In essence, these 
systems suffer from significant overfitting: to be applicable to a new domain, 
their rule sets would need extensive or even complete rewriting. Moreover, even 
for a new dataset within the same domain, for which the schema differs, new 
rules need to be added in order to accommodate the differences.

  In some cases it is beneficial to incorporate a minimal set of rules in KGQA 
systems, particularly for deriving complex concepts. However, this should be a 
last resort and not the main translation mechanism, given that a large rule set is 
hard to maintain and scale.

• Schema-less, incomplete data.
  One of the strengths of relational databases is to have a database schema which 

enables strict data modelling and guarantees certain data integrity and data qual-
ity aspects. However, since RDF does not strictly enforce a (database) schema, 
real-world datasets using RDF knowledge graphs often exhibit poor structure 
[35, 36]. Typical examples are properties with missing or generic domains and 
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ranges. In other words, a question answering system over RDF knowledge graphs 
typically does not have complete schema information. Hence, an important step 
when working with such incomplete knowledge graphs is to enrich the existing 
(incomplete) schema, for example, by inferring property ranges and domains 
based on instance-level data.

• Disambiguation.
  In many cases, different users have different expectations (query intents) when 

asking the same question. An example would be the question What are all the 
Big Data projects?, asked over the European Projects dataset. Possible interpre-
tations of this request are either to retrieve all projects in a Big Data call, or all 
projects by institutions that have the term Big Data in their name or all projects 
whose title or abstract include the terms Big Data etc. The system should ulti-
mately let users decide which interpretation was intended when asking the ques-
tion, also informing them of the range of possible options, according to the avail-
able underlying data.

4  Bio‑SODA: a high‑level perspective

In this section we use a motivating example to illustrate the natural language pro-
cessing pipeline of Bio-SODA.

Consider the data model illustrated in Fig. 2, which combines four different sci-
entific databases. The database Bgee on the left contains information about genes 
and in which parts of the body (anatomical entity) a gene is expressed or absent. The 
database Diseasome in the middle contains information about diseases, as well as 

Fig. 2  Simplified data model based on the Bgee database and QALD4 [17] datasets. The data model is 
a multigraph, including disjoint properties – such as isAbsentIn and isExpressedIn, as well as inverse 
properties, such as possibleDiseaseTarget and possibleDrug. To make matters more complicated, a Side 
Effect and a Disease can be described by the same terms, with instances of the two classes being related 
via the sameAs property. As a result, even simple questions such as “which drugs might lead to strokes?” 
are hard to automatically translate correctly in the absence of external knowledge (i.e. “lead to” = “side 
effect”)
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drugs targeting each disease. In addition, the drugs are part of the pharmaceutical 
database DrugBank (not explicitly shown in the figure). Finally, the database Sider 
contains information about drugs and their side effects. Correspondences between 
equivalent drugs in Sider and DrugBank are made through the sameAs property.

Further assume that a domain expert is interested in answering the question: 
“What are the drugs for diseases associated with the BRCA 4 genes?”.

The natural language processing pipeline of Bio-SODA for answering this ques-
tion is illustrated in Fig. 3. In particular, the main steps involved in translating the 
natural language question to SPARQL are as follows: first, Bio-SODA matches ques-
tion tokens, such as “drugs” and “diseases”, against the data stored in the database, 
using an inverted index. This step is called Lookup Candidate Match. In this exam-
ple, all tokens are of length one, i.e. composed of a single word. The inverted index 
enables retrieving not only the URI of each matching candidate, but also its PageR-
ank score. An example is shown in parentheses for the first two tokens in the Figure. 
In addition, the inverted index retrieves the class and property names of the match 
(omitted in the figure for simplicity). For example, the lookup for “BRCA ” retrieves 
instances of the class Diseasome:Genes, where the rdfs:label property matches the 
user token (“BRCA1”, “BRCA2”). A few simplified Inverted Index entries are pro-
vided in Table 1.

In the Ranking step, candidates are grouped together according to class/property5 
and ranked according to string similarity and PageRank score.

In the Query Graph Construction step, all the ranked candidates are used to 
construct a query graph which represents one possible answer or interpretation of 
the natural language question. For simplicity, Fig.  3 only shows the query graph 
obtained for the top ranked candidate matches. However, Bio-SODA generates 
multiple alternative interpretations, for example, also including the interpretation 
considering Sider:Drugs instead of the DrugBank:Drugs. This can be tested in the 
demo page of Bio-SODA for QALD4.

Next, Bio-SODA generates the corresponding SPARQL query for each query 
graph. Finally, the results are returned by executing the query on the target knowl-
edge graph (see bottom of Fig. 3).

5  Bio‑SODA: system architecture

The main building blocks of the Bio-SODA system architecture, shown in Fig. 4, are 
the following:

• Preprocessing Phase: This phase includes building indexes for efficient lookup 
as well as automatically generating a schema graph, which will serve as the basis 

5 a FILTER for the token BRCA  is created on the Diseasome:Genes class

4 Note that, based on the biomedical literature, mutations in the two BRCA  genes, BRCA1 and BRCA2 
(stemming from BReast CAncer) are known to be associated with multiple types of cancer.
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for constructing candidate SPARQL queries in response to user questions. This 
phase is only executed once, when initialising the system.

Fig. 3  Simplified answer pipeline for the query “What are the drugs for diseases associated with the 
BRCA genes?”. For the sake of simplicity, PageRank scores are solely displayed when more than one 
match is found
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• SPARQL Query Generation Phase: This phase represents the natural language 
query translation process and includes (1) looking up query tokens in the data-
base, (2) ranking the candidate tokens, (3) constructing the candidate query 
graphs, (4) ranking the query graphs in order of relevance to the user question; 
and finally (5) constructing a valid SPARQL query and presenting the results.

Additionally, the Bio-SODA UX interface6, discussed in Sect. 6, introduces a fur-
ther, iterative phase:

• User Dialog and Disambiguation:
  More and more RDF datasets are available in diverse scientific fields, yet for 

practitioners, they are often difficult to explore. Indeed, the increasing size and 
complexity of the data necessitate not only faster indexes but also smarter user 
interfaces providing dynamic querying and filtering possibilities. Our experi-
ence in prototyping Bio-SODA showed that, in order to enable data exploration, 
the system must also guide the user in the process of exploring the data models, 
assist in disambiguating questions, and finally dynamically choose the most rel-
evant answers for specific use cases. To this purpose we designed the Bio-SODA 
UX interface, which can be operated online7 to explore knowledge graphs and 
assist users without technical knowledge of the underlying data models or query 
languages in disambiguating questions targeting the data stored in the knowledge 
graphs.

We will now discuss these phases in more detail.

Fig. 4  Bio-SODA System Architecture

7 Demo available at https:// bioso da. expasy. org/ bioso daUX/

6 Code also at https:// github. com/ anazh aw/ Bio- SODA, see biosodaUX folder

https://biosoda.expasy.org/biosodaUX/
https://github.com/anazhaw/Bio-SODA
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5.1  Preprocessing phase

The core component of this phase is the Indexing Module, which extracts the 
Inverted Index as well as the Schema Graph of the RDF data sources:

• Inverted Index: This index stores the vocabulary of the system. More precisely, 
all the properties that should be searchable from the RDF data store are indexed, 
according to a configuration file that specifies the list of properties of interest 
(by default, all string literals will be indexed). A further configuration option is 
whether URI fragments should also be parsed and indexed. In this case, these 
fragments are split by a predefined punctuation list, and through a camel case 
regex (e.g., “possibleDiseaseTarget” will be indexed as the corresponding key-
words “possible disease target”).

  The inverted index is stored in a relational database for fast searches and it is 
used to match tokens (sequences of keywords in a user query) against the RDF 
data. More precisely, the index stores: keywords (N-grams of literals indexed), 
the indexed instance URI, the class of this instance, the property from which 
the keywords were indexed (e.g. label), as well as the PageRank score of the 
instance (see Table 1). PageRank scores are computed using the approach pre-
sented in [32].

  We note that the size of the inverted index depends on a few characteristics 
of the knowledge graph, including the verbosity of literals (i.e., attributes that 
are strings), as well as the total number of attributes that should be indexed by 
Bio-SODA (an explicit list of these attributes can be provided in the system). 
For example, very verbose fields should not be indexed in their entirety, but per-
haps in a summary form. This variability reflects also in the size of the inverted 
index compared to the size of the original dataset. Table 2 provides an overview 
across the 3 datasets considered in this study. For example, the QALD4 and Bio-
informatics datasets also contain numerical data, which is not indexed, leading 
to a smaller index size than in the case of CORDIS. Generally, in terms of time, 
building the inverted index can take a few hours for large datasets, but this highly 
depends on the performance and availability of the SPARQL endpoint through 
which the dataset is accessible, given that the inverted index is built by querying 
this endpoint. We note that we have not focused on optimizing the inverted index 
construction and instead leave this as future work.

• Schema Graph Extractor: This module is used in order to enrich the (incomplete) 
schema of the knowledge graph(s) using instance-level data from the RDF store. 
The Schema Graph is essentially the accurate schema of the integrated RDF 
data which Bio-SODA automatically extracts from data instances8. Moreover, 
the Schema Graph serves as the basis for constructing candidate query graphs 
from selected entry points (i.e., matches for tokens in a user question).

8 Note that multiple RDF sources can be combined, as long as they are semantically aligned - i.e. they 
have at least one common concept, such as Gene.
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  Computing a Schema Graph allows the system to compensate for incomplete 
schema information, for example, in cases where domains and ranges for proper-
ties are either missing or ill-defined. A second benefit of the Schema Graph is 
that it enables integrating multiple data models from different knowledge graphs. 
More precisely, since the search algorithm works at the level of the Schema 
Graph, it is agnostic to the actual physical representation of the data, mean-
ing it can be easily extensible to support the case of multiple, complementary, 
knowledge graphs in the future. The minimal requirement for achieving this is 
that these KGs overlap, i.e., they have classes in common, such that they can be 
joined in an integrated Schema Graph.

  Extracting the schema graph is achieved via SPARQL queries that com-
pute, for example, domains and ranges of all properties, based on the classes 
of the instances which they connect. As a simplified example, a triple asserting 
“Migraine → possibleDrug → Ibuprofen” will result in Disease → possibleDrug 
→ Drug being added to the Schema Graph.

  Currently, as a minimum requirement we assume that each instance in the 
RDF data has a well-defined class, i.e. an explicit rdf:type. If this is not the case, 
additional preprocessing with external tools (for example, using RDF schema 
discovery techniques [36]), would be required in order to properly define types 
for all RDF instances.

Table 1  Inverted Index Sample

The lookup key is used for fast searches based on keywords from a user question. The remaining infor-
mation is used in attaching candidate matches to the Schema Graph (see description in Sect. 5) in order 
to construct the corresponding query graphs. A lookup key can consist of multiple keywords. The same 
lookup key can appear multiple times

Lookup Key URI Class Property PageRank

Stroke side_effects:C0038454 sider:side_effects sider:side-EffectName 0.34
Drug drugbank:drugs owl:Class rdfs:label 91
Drug sider:drugs owl:Class rdfs:label 2.3
Possible disease target diseasome:possible-

DiseaseTarget
rdf:Property uri_match 80

Table 2  Descriptions of the 
size of the 3 public datasets 
used in our evaluation and their 
corresponding inverted index

Dataset Sources Dataset Size Index Size

QALD4-biomedical Drugbank, 
Diseasome, 
Sider

200 MB 150 MB

Bioinformatics Bgee, OMA 30 GB 8.5 GB
CORDIS EU projects 1 GB 1 GB
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We note here that indexing is a preprocessing step that is only required once, 
when the system is initialized. Afterwards, updates to the RDF store can be incor-
porated periodically through incremental updates (appends) to the inverted index, 
while the Schema Graph only needs to be recomputed in case of schema changes.

5.2  SPARQL query generation phase

Given a natural language question, the goal of the Bio-SODA system is to translate it 
into a set of ranked candidate SPARQL queries, such that the top ranked query is the 
closest to the user’s query intent. In the following, we detail the role of each compo-
nent involved in this translation process, namely the Lookup Module, the Candidate 
Ranking Module, the Query Graph Construction Module, the Query Graph Ranking 
Module and the Query Executor Module.

• Lookup Module:
  The lookup module has the role of retrieving the best candidate matches for 

tokens identified in a user query. A token is defined by the longest sequence of 
keywords that matches an entry in the Inverted Index (implemented in a rela-
tional database for fast searches). For example, in the question “What are the 
possible disease targets of Ibuprofen?” the two tokens extracted will be “possible 
disease target” (corresponding to an RDF property name) and “Ibuprofen” (cor-
responding to one or more Drug instances).

• Candidate Ranking Module:
  The lookup module can return a large number of candidate matches per token. 

In order to find best candidate matches, the ranking module groups together 
equivalent matches and ranks them in order of relevance to the initial query. 
For example, instances of the class Drug with matching rdfs:label are grouped 
together. In our running example illustrated in Fig.  3, the genes BRCA1 and 
BRCA2 are a match for the keyword BRCA .

  Furthermore, both string similarity and node importance are taken into 
account when ranking. Including the PageRank score as a measure of importance 
in the knowledge graph reduces the influence of the quality of labels assigned 
(labels which can be imprecise, see discussion in Sect. 3).

  The intuition behind this is that domain knowledge graphs usually cluster 
around a few important concepts, which will be reflected in the PageRank scores 
of the corresponding nodes. For example, UniProt9 [37], a protein knowledge 
base containing more than 60 billion triples, currently includes only 177 classes. 
Out of these, only few classes, such as Protein and Annotation, have a central 
role, and will usually be the target of domain expert questions.

  Likewise, in the case of the CORDIS EU projects dataset (see Sect.  7 for 
details), two different classes of Projects are available, EC-Project and ERC-Pro-
ject. However, there is significantly more information in the dataset for the first 

9 https:// sparql. unipr ot. org/

https://sparql.uniprot.org/
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class. In the lack of query logs or handcrafted rules for mapping query tokens to 
the correct candidates, the PageRank score can serve as a good proxy for ranking 
candidates according to node centrality, similarly to the initial approach used by 
web search engines [38].

  As an added benefit, scoring with PageRank also ensures that metadata 
matches are prioritized. For example, Drug as a class name will rank higher than 
an instance match.

  Finally, to ensure that candidate matches not only have good string similar-
ity, but are also semantically similar, word embeddings are also used in the can-
didate ranking. The similarity comparison ensures that spurious matches, such 
as gene compared to oogenesis, are discarded based on a pre-defined similarity 
threshold in the system configuration.

  Any word embeddings can in principle be used with Bio-SODA. For the two 
main bioinformatics use cases considered in this paper, we use Word Vectors 
extracted from PubMed, as described in [39]. The candidate ranking module pre-
sents to the user top N matches per query token, where N is configurable in the 
system. We note that it is important to limit the number of matches per token for 
performance reasons. This is because the total number of candidate queries gen-
erated for a question with T query tokens (i.e. concepts searched by the user) will 
be in the worst case NT (there are up to N matches for each of the T tokens).

• Query Graph Construction Module:
  The goal of this module is to use the matches from the previous step to gen-

erate a list of candidate query graphs. We extend the approach presented in 
[40] to translate matches to query graph patterns. More precisely, we apply the 
iterative algorithm shown in Algorithm  1: for each set of candidate matches 
(one match per query token), we augment the Schema Graph by attaching the 
candidate matches to their corresponding class. Next, we find the minimal 
subgraph that covers all matches. For this purpose, we solve the approximate 
Steiner tree problem by computing the minimal spanning tree that covers one 
match per token.

  Note that there might be multiple such subgraphs, given that two classes can 
be connected via multiple properties. However, unless the user can be involved 
in disambiguating, it is important to generate all the variants, given that two 
equal-length subgraphs might actually have opposite semantics. Recall the exam-
ple shown in Fig. 2, where the properties e.g, isAbsentIn versus isExpressedIn 
both connect the same two classes, but represent disjoint result sets.

  Finally, in some cases handcrafted rules for inferring new concepts or relation-
ships are required, due to the complexity of the corresponding query graphs. In 
such cases translating user questions into SPARQL cannot be done via simple 
entity linking methods. Therefore, if needed, our approach also supports adding 
rules to derive implicit information from the original knowledge graph as part 
of the question answering pipeline. These rules are implemented as sub-queries 
similar to the SELECT SPARQL query form. In this case, the rule head is the 
SPARQL query projection, and the rule body is the WHERE clause content.
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• Query Graph Ranking Module:
  The query graph ranking module plays an important role in presenting the 

user with a meaningful, ordered list of results. In contrast to existing work, we 
do not return the overall minimal subgraph as the top result, but rather the graph 
that maximizes the sum of the match scores of the candidates covered. To under-
stand why this is the case, consider the following question: “What are the drugs 
for asthma?”. This question translates to a 2-hop query graph, joining Drug and 
Disease via the possibleDiseaseTarget path (see Fig. 2). However, one likely sce-
nario is that the description of a Drug instance includes the keyword asthma. In 
this case, the minimal query graph would be 1-hop only, retrieving only Drug 
instances that explicitly contain the keyword in the description, probably a small 
subset of all instances which have the corresponding Disease as a possible target. 
In this case, the minimal result would have good precision, but very low recall.

• Query Executor Module:
  Finally, the query executor translates the ranked query graphs into SPARQL que-

ries, assigning meaningful variable names, also adding human-readable fields to the 
result set wherever possible. Importantly, we do not only return the best result, but 
rather a ranked list of possible interpretations (top N, where N is configurable in the 
system). This gives the user the opportunity to inspect the results in order to choose 
only the interpretation (i.e. SPARQL query) that matches the question intent.

Algorithm 1: Iterative graph-based approach for constructing query
graphs from candidate matches
Data:
Mn×t: the matrix of ranked candidate matches, where
n = the number of candidate matches per token,
t = the number of tokens in the user question.

Mi = a set of candidates covering one match per token (i.e. the ith

row vector of the Mn×t matrix).
G: Schema Graph of the RDF data
Result: S: the ranked set of candidate query graphs

1 foreach Mi ∈ M do
2 QGi = φ (empty graph)

foreach candidate match Tj ∈ Mi do
3 if Tj = a RDF property then
4 Get domain D and range R of Tj from G;

Add D and R as vertices to QGi;
Add edge Tj between D and R in QGi;
if multiple domains / ranges for Tj then Create a new
copy of QGi per alternative;

5 else
6 Compute in schema graph G:

shortest paths between class of Tj and classes of other
matches Tz in Mi;
Add shortest paths to QGi

if multiple alternatives exist then
Create a new copy of QGi per alternative;

7 end
8 end
9 Add spanning tree extracted from QGi to result set S (Steiner tree

approximation)
10 end
11 S sorted = sort S by sum of match score of composing vertices. On a

tie, sort by the weight (i.e. the number of edges) of spanning tree.
return S sorted
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6  Bio‑SODA UX: user dialog interface

6.1  Design

Since natural language questions can be very ambiguous and two users might 
mean different things when asking the same question, it is important that the sys-
tem helps the user in exploring the data and in finding the correct answer to a 
question. Hence, we have built Bio-SODA UX, an interface that guides the user 
in the data discovery process by disambiguating natural language expressions that 
have multiple meanings.

To help the user understand the meaning of different results, the concepts are 
visually represented in a graph of the data model, supported by a data-driven 
color scheme and additional detailed information.

Bio-SODA UX provides more information about the underlying data and the 
meaning of the results on hover/click. Once the user received the first answer, a 
data table is populated with a result set. The immediate feedback of the system 
helps the user to identify potential refinements of the question or opportunities 
for disambiguation (i.e. choosing the right concepts). After each interaction with 
the user, the data table is reloaded to match the current state. While the default 
view shows only a few key features of the resulting data (e.g. Genes), the system 
allows for adding other potentially relevant information as “alternative columns” 
(e.g. gene descriptions), which the user can individually keep or discard. After 
the user has successfully disambiguated, the full set of results can be downloaded 
as a comma-separated values (CSV) file for further downstream processing.

6.2  Implementation

The implementation of Bio-SODA UX consists of two main parts - the user web 
interface and the API. The web interface acts as a mediator between user and API. 
The API connects to the underlying Bio-SODA question answering system, which 
enables the natural language translation to SPARQL and query execution. The code 
for both of these parts is publicly available.

The user interface was developed using the jQuery library10, the bootstrap 
framework11 for graphical representations, and D3.js12 for graph and data table 
visualization. Bio-SODA UX consists of three main parts, shown in Fig.  5: (1) 
the query input field for entering the users’ natural language question; this part 
is also used to present the intermediate results to the user and to allow the user 
to disambiguate detected concepts via drop-down lists; (2) the node graph which 
displays the data model to the user, including where the candidate matches attach 
to the schema graph, providing some intuition of the data; (3) the data table on 

10 https:// jquery. com
11 https:// getbo otstr ap. com
12 https:// d3js. org

https://jquery.com
https://getbootstrap.com
https://d3js.org
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the bottom of the page, displaying the results corresponding to the current user 
selection.

The communication between the user interface and the Bio-SODA engine in 
the back-end is implemented via a series of API calls. We summarise here the 
main steps involved: 

1. The front-end invokes the Bio-SODA algorithm when the user first inputs a natu-
ral language question. The back-end algorithm will respond to this initial call with 
the following information:

• ranked candidate matches for each concept in the original question. For each 
candidate match, the back-end will also indicate what is the class of the match 
(e.g. a Gene, Protein or Anatomical Entity) - which helps attach the candi-
date match to the graph displaying all candidates. The user will then have the 
option to select the best candidate match from the corresponding drop-down 
list, while also inspecting the data model graph and seeing how each candi-
date connects. Furthermore, the response from the back-end includes addi-
tional information for each candidate, such as a label or a description of the 

Fig. 5  Bio-SODA UX interface for knowledge graph exploration and query disambiguation. The three 
main components of the interface are: 1) an input field which also provides drop-downs with example 
candidate matches for each searched concept; 2) the fraction of the data model relevant to the question, 
shown in graph form; clicking on any node will display additional information in the “Details” box on 
the right; 3) the results table with options to extend with more attributes related to the concepts in the 
question
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RDF entry it matched. This information can be seen by clicking on the cor-
responding node displayed in the graph. Since for any given term, there can 
be many possible entries, in order to group results together, only one example 
candidate is provided for each class.

• a SPARQL query is returned and executed, corresponding to the best answer 
according Bio-SODA ranking algorithm. The results are displayed in the table on 
the bottom of the page and the SPARQL query itself can be inspected by clicking 
“Show SPARQL query”.

2. When disambiguating, the user can select a different entry from the drop-down list 
of a given concept. This will trigger a new API call to the back-end, including the 
original question and all the current selections for each matched concept, such that 
the lookup and candidate ranking phases (see Sect. 5) in the Question Answering 
Pipeline can this time be skipped. The back-end will return a new SPARQL query 
and the corresponding results, according to the updated candidates selected by 
the user.

6.3  Use case

Here, we will focus on selected example use cases considering Bio-SODA UX 
applied over the bioinformatics database of gene expression Bgee.

6.3.1  Example 1

The user can first provide a natural language question, such as “What are the dros-
ophila anatomic entities at the embryo developmental stage?”. In response, Bio-
SODA UX returns the best-ranked answer in tabular form (see Fig. 6), while show-
ing examples of candidate matches for each concept in graph form. The graph shows 
the connections between the chosen concepts and thus supports the user in under-
standing the underlying data model. For example, it can show how “anatomical enti-
ties” and “developmental stages” are linked through “gene expression conditions”. 
The data table presents results matching the selected concepts and filters.

The user can analyze every matched concept, such as “drosophila” or “embryo”, 
via the displayed graph. Furthermore, additional information, such as the URI of 
the matched node, its class, the property that matched and the Page Rank score of 
the node, can be displayed in the “Details” panel on the right side of the page, by 
clicking on the matched node in the graph. By default, the system chooses the best 
candidate match for every concept according to the Bio-SODA ranking algorithm 
(see Sect. 5). The chosen candidates are also emphasized in the graph in the form of 
larger nodes. However, alternatives are presented for every concept in the form of 
drop-down menus. For example, an embryo can refer to either an organ (anatomical 
entity) or a developmental stage. The user can disambiguate the intended meaning 
by inspecting the available options and choosing the correct candidate match from 
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the drop-down menu. The Bio-SODA UX supports the user by also assigning every 
concept a distinct color, which is then used throughout the disambiguation process.

In our example, the term “drosophila” can be matched, among other meanings, to 
an anatomical entity (i.e. an organ). This is because anatomical entities are sometimes 
explicitly annotated with the species name, e.g. “crop (Drosophila)” - an equivalent 
of the mammal stomach in the Drosophila (fly). However, the intended meaning of 
the concept in the original question is the name of a species (i.e., a Taxon), for exam-
ple “Drosophila yakuba” or “Drosophila melanogaster” (the fruit fly).

By default, Bio-SODA ranks the crop higher, however, the ranking is not accu-
rate since we want to receive a list of all anatomical entities from Drosophila flies, 
not only those explicitly annotated with the term “Drosophila”. The users can in 
this case clarify their intended meaning by choosing the Taxon entry correspond-
ing to the “Drosophila” concept, from the drop-down list that is highlighted in pur-
ple in the query in Fig. 6. A further disambiguation required in this case is to then 
select the “embryo” candidate match that corresponds to a developmental stage (i.e., 
“embryo stage”, the second match in the drop-down shown in Fig. 6), as opposed to 
an anatomical entity (the top ranked candidate, chosen by default for this term). This 
can be selected from the drop-down menu of the term highlighted in red in the fig-
ure. The different candidates are also illustrated in the graph below (nodes colored 
in red), in order to facilitate understanding which match corresponds to the original 
intent of the query.

Fig. 6  Bio-SODA UX example use case for the question “drosophila anatomic entities at the embryo 
developmental stage”
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6.3.2  Example 2

A second example, shown in Fig. 7, illustrates the response to the question “What 
are the genes with lung in the description?” This question reflects a user with more 
knowledge of the data model, since it requests information related to a property of 
Gene instances (i.e., those instances that explicitly contain the term lung in the gene 
description). By default, Bio-SODA ranks the candidate match lung corresponding 
to an anatomical entity (an organ) higher. This usage is much more common, which 
will reflect in the Page Rank score of the anatomical entity match Lung, therefore 
making it the top scored candidate for this term. However, this can lead to an incor-
rect or incomplete answer, as it would correspond to genes expressed in the lung 
organ, not those annotated with the term. Nevertheless, by inspecting the graph the 
user can easily clarify the intended meaning, by selecting the entry corresponding to 
an example of a gene description. This is the node attached to the Gene class, shown 
in the centre of Fig. 7.

In the drop-down list for the term lung, highlighted in purple in the original ques-
tion, this is the third ranked candidate match. Hovering over the candidate matches 
will highlight the corresponding nodes in the graph with a red border, making it eas-
ier to understand where they attach in the original data model. Moreover, clicking on 
any of the nodes (e.g. the purple node attached to the Gene class, shown with a red 
border in Fig. 7) will also display more information about the candidate, including 
which class and property matched (i.e. the description, http:// purl. org/ dc/ terms/ descr 
iption, of a Gene, http:// purl. org/ net/ orth# Gene).

The user can optionally inspect the generated SPARQL statement by clicking 
on Show SPARQL query on the corresponding button in the page, which will also 
confirm the correct answer for a more advanced user, while helping a novice user 
better understand how to obtain information for this question via SPARQL queries. 

Fig. 7  Bio-SODA UX example use case for the question “genes with lung in the description”

http://purl.org/dc/terms/description
http://purl.org/dc/terms/description
http://purl.org/net/orth#Gene
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Finally, the user can further find out more details about the retrieved genes by fol-
lowing the clickable links provided in the results table.

7  Experiments

In this section we evaluate the F1-score performance of Bio-SODA for translat-
ing natural language questions to SPARQL and compare it against state-of-the-art 
systems for querying RDF-based knowledge graphs. Note that we focus on top-
performing open-source systems that are publicly available for testing and do not 
require training data [22].

In particular, we tested Sparklis [33], a generic query builder system for knowl-
edge graphs13. Furthermore, we compared against GFMed [24] which was top 
ranked in the QALD4 biomedical challenge and specifically designed for this data-
set. Apart from this, we use GFMed’s publicly available grammar14 to evaluate how 
the system performs outside of the official QALD4 biomedical dataset. In addition, 
we compared our approach against SQG [12], a system for query generation over 
knowledge graphs15.

7.1  Datasets

Three datasets were considered for evaluating Bio-SODA, see Table 3. Importantly, 
all three are real-world, in-use datasets. For each dataset, we briefly highlight the 
specific challenges that need to be tackled in the context of designing a generic 
question answering system: 

1. The QALD4 biomedical dataset is composed of Sider, DrugBank and Diseasome. 
This dataset includes several challenges such as multiple Drug classes and identi-
cal terms describing both Disease and Side Effects instances, which are connected 
via owl:sameAs properties.

2. The bioinformatics dataset is composed of the Bgee (gene expression) [41] and 
OMA (orthology) [42] RDF stores. Given the highly specialized domain infor-
mation contained in these sources, a particularity of this dataset is that questions 
can include complex concepts which translate to long SPARQL query graphs. An 
added challenge deriving from this is that the same concepts can be connected 
through multiple equal-length paths with semantically different or even opposite 
meanings.

3. The CORDIS dataset of EU-funded projects. Although this dataset has a simpler 
schema, the challenge here is that questions can have a higher degree of ambigu-
ity. In some cases, multiple interpretations are valid – for example, many terms are 

13 A live demo can be tested with any SPARQL endpoint at http:// www. irisa. fr/ LIS/ ferre/ spark lis/
14 See http:// cs- gw. utcluj. ro/ ~anca/ GFMed/ index. html
15 Available at https:// github. com/ AskNo wQA/ SQG/

http://www.irisa.fr/LIS/ferre/sparklis/
http://cs-gw.utcluj.ro/%7eanca/GFMed/index.html
https://github.com/AskNowQA/SQG/
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reused often and in a variety of contexts, such as “Big Data”. This can be either 
part of a project title, a topic or even an organization name. Therefore, identify-
ing the query intent in some cases (e.g. Show Big Data projects) cannot be done 
without user disambiguation.

7.2  Queries

We have reused the official 50 queries of the QALD4 biomedical challenge16. We 
do not distinguish between training and test queries. Indeed, we report performance 
metrics for all systems we tested across the entire set of 50 queries. Given that the 
test set was also available to participants in the official challenge, we believe this to 
be a fair evaluation. We do not change the questions in the official challenge, not 
even in cases where we could identify mistakes in the question. Furthermore, as 
opposed to previous work using this benchmark [43], we do not materialize triples 
based on owl:sameAs statements and only use the exact dataset, as provided in the 
official benchmark.

For the bioinformatics dataset, in collaboration with domain experts, we created 
a benchmark of 30 queries, in increasing order of complexity, across two datasets, 
namely Bgee and OMA. The queries represent real information needs of domains 
experts within the field of gene expression and orthology, using the publicly avail-
able RDF data of Bgee17 and OMA18. The average number of triple patterns per 
query here is 7 (not taking into account joint queries between the two sources, which 
have even higher complexity), with some questions jointly targeting 4 entities or 
more (Gene, Species, Anatomical Entity, Developmental Stage). In contrast, in exist-
ing benchmarks, such as LC-Quad [14], queries with only 2 entities are already con-
sidered complex.

In order to test Bio-SODA using an entirely different domain, using the CORDIS 
dataset of EU funded projects, we created a test set of 30 queries in increasing order 
of complexity. Given the relatively simple structure of this data model, the aver-
age number of triple patterns per query is close to that of existing KGQA bench-
marks [14], with an average 2.3 triple patterns per query. However, the complexity 
stems from the usage of filters, literals in the query, as well as the higher degree of 
ambiguity.

Table 3  Descriptions of the 3 public datasets used in our evaluation

Dataset Sources #Classes #Triples Size on Disk

QALD4-biomedical Drugbank, Diseasome, Sider 12 0.69 M 200 MB
Bioinformatics Bgee, OMA 37 430 M 30 GB
CORDIS EU projects dataset 26 6.5 M 1 GB

16 https:// github. com/ ag- sc/ QALD/ blob/ master/ 4/ data
17 https:// bgee. org/ sparql
18 https:// sparql. omabr owser. org/ sparql

https://github.com/ag-sc/QALD/blob/master/4/data
https://bgee.org/sparql
https://sparql.omabrowser.org/sparql
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Queries across the three datasets include aggregations, negations, and make 
extensive use of filters.

All questions, as well corresponding SPARQL queries, are available in the Evalu-
ation folder of our GitHub repository19.

7.3  Results

We use the standard evaluation metrics of precision (P), recall (R) and F1-score, 
macro-averaged over all questions in the dataset. For Bio-SODA in particular, 
although the system generates a ranked list of possible interpretations, we report 
numbers based on the top answer only (Precision@1). More precisely, these 
results are evaluated based on the top answer provided by the default ranking of 
the Bio-SODA system, without any user disambiguation involved. In the Bio-
SODA UX interface, this corresponds to the answer (and corresponding SPARQL 
query) shown to the user by default in response to a given question, without any 
manual intervention from the part of the user. The results are presented in Table 4 
and discussed in the following section. For easy accessibility to the Bio-SODA 
system, as well as reproducibility of the results, we also provide a demo page for 
each of the three datasets, available online (see Sect. 1).

We will now discuss the performance of each system in more detail.
GFMed shows the highest F1-score for the QALD4 dataset. However, it can-

not (nor was it intended to) be used outside this dataset without rewriting the set 
of grammar rules that are strictly designed for question answering over specific 
releases of Diseasome, Drugbank and Sider. Hence, the F1-score for the bioinfor-
matics dataset and the CORDIS datasets is 0.

SQG on the other hand, originally evaluated on the LC-Quad [14] benchmark, 
does not support complex multi-hop questions, nor filters or queries involving 
literals. “Show me projects which started in 2020?” is an example of such a query, 
where 2020 is a numerical literal, as opposed to a linkable entity. While in the 
case of LC-Quad these limitations do not impact performance, all three datasets 
considered in our evaluation include such features, which explains the poorer per-
formance of SQG: an F1-score of 0.42 in the case of QALD4, only 0.33 in the 
CORDIS dataset, and finally 0.16 in the case of the bioinformatics dataset. We 
note that these results are a theoretical best, since for SQG we assume perfect 
entity and property linking, leading to the highest performance it can achieve.

Finally, Sparklis is not a question answering system per-se, but rather a query 
builder, which helps users form the correct question by composing building 
blocks starting from examples of class names, properties, values etc. Therefore, in 
order to answer questions, we needed to rephrase them from the available build-
ing blocks manually. On the positive side, we found Sparklis to be a powerful 
system, because it enables building a rich variety of query types out-of-the-box. 

19 Evaluation in https:// github. com/ anazh aw/ Bio- SODA/

https://github.com/anazhaw/Bio-SODA/
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To achieve this, only the SPARQL endpoint URL of the target RDF data store is 
required.

Using the query building methodology of Sparklis, 44 out of 50 questions in the 
QALD4 biomedical benchmark can be answered. Furthermore, all questions in the 
CORDIS dataset can also be answered. Although this result might seem surprising, 
recall that the major challenge of this dataset is disambiguation. The manual query 
building process in Sparklis addresses exactly this problem, provided that the user 
knows very well how the data are structured and semantically represented. There-
fore, on the negative side, we found that the query building methodology requires 
precise understanding of the data model, especially if multiple classes have the same 
label, as is the case in QALD4.

For example, answering the question “Which drugs might lead to strokes?” 
requires knowing that the Drugs class to be used is the one in Sider, as opposed to 
the one in Diseasome. Furthermore, formulating questions in Sparklis is a manual 
and therefore time-consuming process. Even when making the strong assumption 
that the user has perfect knowledge of the data model, as well as of the features of 
Sparklis (for example, how to correctly formulate aggregations, which can be chal-
lenging), the minimal number of manual steps required to formulate questions is 
on average 5.5 interactions per question for QALD4 and 6.2 for CORDIS, with a 
maximum of 10 for the more complex questions. In most cases, the question result-
ing from composing the building blocks will be significantly different from a true 
natural language question.

We did not pursue this approach on the bioinformatics dataset, because complex 
concepts in this dataset (ortholog, paralog) cannot be expressed through the query 
building mechanism. More precisely, Sparklis does not support complex property 
paths.

Table 4  Performance of 
translating natural language 
questions to SPARQL. By 
considering a perfect user of 
the Sparklis tool, the minimum 
number of manual steps for 
composing a query (averaged 
over all queries) is shown 
between parentheses

Datasets and Systems Precision Recall F1

Dataset 1: QALD4
GFMed 1 0.99 0.99
SQG 0.42 0.42 0.42
Sparklis (5.5 steps/query) 0.88 0.88 0.88
Bio-SODA 0.61 0.60 0.60
Dataset 2: Bioinformatics
GFMed 0 0 0
SQG 0.16 0.16 0.16
Sparklis - - -
Bio-SODA 0.6 0.6 0.6
Dataset 3: CORDIS
GFMed 0 0 0
SQG 0.33 0.33 0.33
Sparklis (6.2 steps/query) 1 1 1
Bio-SODA 0.66 0.66 0.66
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Bio-SODA is a middle-ground between the generic, but manual approach of 
Sparklis, and the grammar-based approach of GFMed, which is not easily transfer-
able to a new domain. More precisely, Bio-SODA achieves relatively good perfor-
mance (around 0.6 F1-score) across the three datasets without requiring manual 
intervention. The only exception are two custom rules for the bioinformatics dataset, 
which help answer 4 out of 30 queries.

Although GFMed has the best results for QALD4, it cannot be used outside this 
dataset without a complete rewriting of the grammar rules. Sparklis also achieves 
better results on the two datasets tested, but with the big disadvantage that it is a 
manual approach, where the user must understand the data model in order to com-
pose questions correctly. Our findings are further detailed in the Evaluation folder in 
our GitHub repository.

7.4  Impact of ranking algorithm

In this section we study the impact for our ranking algorithm on the performance of 
Bio-SODA. In particular, we conducted an ablation study to quantify the importance 
of ranking by PageRank score of candidate matches. For this purpose, we disable our 
ranking algorithm and instead use a simple string similarity-based ranking algorithm 
for candidate matches, returning the overall minimal subgraph as the top answer.

The results, displayed in Table 5, show that ranking makes a crucial difference, 
in particular for the CORDIS dataset. The reason for this is that for most of the 
keywords that describe metadata (such as class names, like Project Topic or Sub-
ject Area), there exists in the dataset a project whose acronym matches exactly. For 
example, there exist projects with acronyms such as Topic, Area, Host, Code, which 
are (according to string similarity only) classified as best matches for tokens in the 
original question. Constructing the overall minimal subgraph leads to wrong results 
in almost all cases, except for only 3 out of 30 questions, where there is no ambigu-
ity. Note that adding no other change aside from considering PageRank scores in 
ranking enables answering 17 more queries out of 30 for this dataset.

7.5  Error analysis and remaining problems

In the QALD4 biomedical benchmark, Bio-SODA correctly answered 30 out of 50 
questions with an additional 2 partially correct. We note that 1 question in QALD4 

Table 5  Ablation study on the Bio-SODA performance of translating natural language questions to 
SPARQL: (a) SPARQL candidate query ranking with node centrality measure versus (b) traditional rank-
ing approach with string similarity and overall minimal subgraph as top result

Dataset (a) Correct with Bio-SODA Ranking (b) Correct with String 
Similarity Ranking

QALD4 30/50 23/50
Bioinformatics 18/30 12/30
CORDIS 20/30 3/30
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cannot be answered by Sparklis nor Bio-SODA due to missing label information. 
More precisely, the instance http://www4.wiwiss.fu-berlin.de/diseasome/resource/
genes/EDNRB is the target of the question “Which genes are associated with 
Endothelin receptor type B?”. However, the label Endothelin receptor type B is not 
assigned in the official dataset of the benchmark, nor can it be derived from the URI 
fragment, for example. Upon closer inspection, it becomes clear that the question is 
ill-formulated. Since EDNRB itself is a gene, the correct question should be “Which 
diseases are associated with EDNRB?”. In total, we have found at least 4 out of 50 
entries in the dataset to contain errors, either in the question formulation, or in the 
ground truth answer. These have already been discussed in previous studies [43].

An additional number of questions cannot be answered by Bio-SODA across the 
three datasets due to other reasons. We summarise them in Fig. 8, explained in the 
following:

• Aggregations. Our system currently does not support questions that require 
aggregations, such as Count, Sum etc. An example of such a question would be 
Count the projects in the life sciences domain. A possible solution to this would 
be to include pre-defined patterns or training a question classifier for this pur-
pose.

• Superlatives/Comparatives. Another unsupported feature in the current prototype 
is the use of quantifiers (superlatives or comparatives). An example would be 
Which drug has the highest number of side-effects?

• Conjunctions. Conjunctive questions which involve multiple instances of the 
same class are not supported in the current prototype. An example of such a case 
is List drugs that lead to strokes and arthrosis. This limitation derives from our 
methodology in computing the minimal subgraph covering candidate matches, 

Fig. 8  Bio-SODA failure analysis. Out of the total 50 questions in the QALD4 biomedical benchmark, 
Bio-SODA cannot correctly answer 20. A further 12 out of 30 cannot be answered in the bioinformatics 
dataset, mainly due to query complexity (some queries having more than 10 triple patterns). Finally, on 
the CORDIS dataset 10 out of 30 queries cannot be answered, a large fraction of which include features 
currently unsupported in Bio-SODA: aggregations, comparatives, conjunctions etc
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which would require special handling for cases when multiple candidates of the 
same class are present in a question.

• Properties with same domain and range. Stemming from the same limitation 
mentioned above, these properties are currently not supported. In QALD4, the 
only instance of this is the diseaseSubtypeOf property, which has the Disease 
class as both domain and range. In the bioinformatics dataset we handle sym-
metric properties describing ortholog and paralog genes through custom rewrite 
rules.

• Ranking. One of the major sources of failure in our prototype remains ranking. 
In the QALD4 dataset, ranking problems affect 4 out of 50 queries. An example 
is: What are the diseases caused by Valdecoxib?. Here, the system cannot cor-
rectly choose Drug - sideEffect - Side_Effect over the alternative Disease - possi-
bleDrug - Drug. The reason for this is that the Disease class matches exactly the 
term in the question, while the Drug class in Diseasome has a higher PageRank 
score than the one in Sider.

  A more complex corner-case is part of the bioinformatics dataset, What are 
the genes with lung in the description? The term lung is commonly used to refer 
to an Anatomical Entity. This is also reflected in the node importance of this 
match in the dataset. Therefore, the system cannot correctly determine that, in 
the context of this question, it should instead be considered part of the descrip-
tion property of a Gene. The correct candidate match scores very low, resulting 
in the correct answer also being ranked too low. However, through user disam-
biguation in the Bio-SODA UX, this question can also be correctly answered. 
The process is shown in Fig. 7 and a discussion is included in Sect. 6.3. A simi-
lar example from QALD4 is Which drugs have bipolar disorder as indication?, 
where bipolar disorder is matched against a Disease instead of a drug indica-
tion. In these cases user disambiguation, at the level of candidate matches, is an 
important component in solving the problem.

• Incomplete information. This problem affects mainly the results in the QALD4 
dataset, more precisely 4 out of 50 queries. We have already covered the example 
of the question targeting the EDNRB gene, which lacks the correct label in the 
official dataset. We currently do not enrich the inverted index with synonyms or 
external information, which means questions must be formulated in terms of the 
available vocabulary of the dataset. However, this limitation could be addressed 
by indexing synonyms from external data sources. Additional three questions 
cannot be answered because they refer to URIs that do not have any class defined 
in the data, therefore the system cannot attach the candidate matches anywhere 
in the Schema Graph.

  An example is the drugType property, which can take two values, either http:// 
www4. wiwiss. fu- berlin. de/ drugb ank/ resou rce/ drugt ype/ exper iment al or http:// 
www4. wiwiss. fu- berlin. de/ drugb ank/ resou rce/ drugt ype/ appro ved. We believe a 
better modelling of the data should have provided, for example, either these as a 
xsd:anyURI datatype, given they are not used for any other purposes, or defined 
some class for both.

• Query complexity (difficult queries). The bioinformatics dataset covers queries 
with high complexity, which are difficult to solve especially since they include 

http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/experimental
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/experimental
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/approved
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/approved
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symmetric properties, with multiple instances of the same class, each filtered 
according to different conditions.

  An example of such a question is: Retrieve Oryctolagus cuniculus’ proteins 
encoded by genes that are orthologous to Mus musculus’ HBB-Y gene. Here, the 
task is to retrieve Gene instances in a particular Taxon (species), namely the rab-
bit (Oryctolagus cuniculus), which are orthologs (symmetric property) of a sec-
ond instance of Gene, labeled HBB-Y, in a different species, namely the mouse 
(Mus musculus). The resulting query has over 15 triple patterns, with 3 filters 
(the 2 species names plus the gene name).

• Others. Two questions in the QALD4 dataset have particular challenges, the 
first being a stemming error. In the question Give me drugs in the gaseous state, 
the term gaseous cannot be correctly stemmed to gas. The second type of error 
is due to unsupported ASK queries, e.g. Are there drugs that target the Protein 
kinase C beta type?. Here, Bio-SODA retrieves examples of such drugs, instead 
of the boolean True. However, we do not consider this a fundamental limitation 
and a question type classifier could be added in future work.

We report a more detailed analysis of all systems considered in this paper in the 
https:// github. com/ anazh aw/ Bio- SODA/ tree/ master/ Evalu ation in our GitHub 
repository.

8  Lessons learned

Considering the challenges of question answering over knowledge graphs intro-
duced in Sect. 3, we highlight the following design goals for natural language pro-
cessing engines:

• Generality: The system should be easily adaptable to new datasets. In particu-
lar, the system should be able to answer questions in a new domain with mini-
mal manual intervention and without relying on extensive training data, which 
is hard to obtain in many domains. Along this line, a desirable property is also 
the ability to cope with “real-world” datasets, dealing with incompleteness in the 
data, for example in the form of:

– missing schema information (should be inferred from instance-level data);
– missing labels (should be incorporated from URIs whenever meaningful);

• Extensibility: The system should easily work with multiple datasets (provided 
they are already semantically aligned—i.e., data integration is a prior require-
ment). Many studies introduce possible approaches for data integration, includ-
ing a recent approach for ontology-based data integration, covering one of the 
bioinformatics use cases presented in this paper [44].

• Configurability: The database owner must be able to specify which properties 
(e.g. labels, descriptions) should be searchable using the system. Our experience 
with real-world datasets showed that in general it is not desirable for all proper-
ties to be indexed and thus be searchable. As an example, in many cases, fields 

https://github.com/anazhaw/Bio-SODA/tree/master/Evaluation
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in the queried data sources can be either redundant or too verbose. In bioinfor-
matics, these are abstracts of papers that are assigned as values to an RDF prop-
erty, whose length can therefore be up to 300 words. Similarly, in the CORDIS 
dataset, these are the abstracts of the EU projects. These cases should be han-
dled through a dedicated approach, for example, based on classical information 
retrieval methods as discussed in [45].

• Explainability: The system should clearly guide the user through how a ques-
tion was processed and interpreted. This starts from explaining which concepts 
were matched in relation to the original question, continuing with how these can-
didate matches are composed together in a query graph in order to provide the 
final SPARQL query. Finally, the query results should be understandable as well. 
Therefore, the projected variable names should also be meaningful.

9  Conclusions and outlook

In this paper we have introduced Bio-SODA, a question answering system for 
domain knowledge graphs, which we evaluated across three real-world datasets per-
taining to different domains: biomedical, gene orthology and gene expression, and 
finally EU-funded projects. Our results have shown that Bio-SODA outperforms 
state-of-the-art systems that are publicly available for testing by a 20% F1-score 
improvement and more. The main advantage of Bio-SODA over existing open-
source systems is that it can handle complex, multi-triple pattern queries without 
requiring user guidance and training data. Bio-SODA uses a novel ranking approach 
that takes into account both string and semantic similarity, as well as node central-
ity of candidate matches. Our experiments demonstrate that our ranking approach 
improves the quality of results, particularly in the context of datasets which can suf-
fer from redundancy and imprecise labels.

We have also introduced Bio-SODA UX, a graphical interface allowing users to 
explore the underlying data models and disambiguate their questions dynamically. 
As future work, we plan to consider the users’ feedback for learning to rank the 
best answer among resulting candidate queries. We also plan to evaluate the average 
number of disambiguation steps required for clarifying the semantics of user ques-
tions. As a long term direction for future research, we envision compiling a bench-
mark of cross-domain question-answer pairs, similarly to the Spider benchmark in 
the relational database world [46], which would enable research into refining pre-
trained KGQA models for new domains.
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