
Vol.:(0123456789)

Distributed and Parallel Databases (2022) 40:409–440
https://doi.org/10.1007/s10619-022-07414-w

1 3

Bio‑SODA UX: enabling natural language question
answering over knowledge graphs with user
disambiguation

Ana Claudia Sima1 · Tarcisio Mendes de Farias1,2,3 · Maria Anisimova1,4 ·
Christophe Dessimoz1,2,5,6 · Marc Robinson‑Rechavi1,3 · Erich Zbinden1,4 ·
Kurt Stockinger4

Accepted: 21 June 2022 / Published online: 16 July 2022
© The Author(s) 2022

Abstract
The problem of natural language processing over structured data has become a
growing research field, both within the relational database and the Semantic Web
community, with significant efforts involved in question answering over knowledge
graphs (KGQA). However, many of these approaches are either specifically targeted
at open-domain question answering using DBpedia, or require large training data-
sets to translate a natural language question to SPARQL in order to query the knowl-
edge graph. Hence, these approaches often cannot be applied directly to complex
scientific datasets where no prior training data is available. In this paper, we focus
on the challenges of natural language processing over knowledge graphs of scien-
tific datasets. In particular, we introduce Bio-SODA, a natural language process-
ing engine that does not require training data in the form of question-answer pairs
for generating SPARQL queries. Bio-SODA uses a generic graph-based approach
for translating user questions to a ranked list of SPARQL candidate queries. Fur-
thermore, Bio-SODA uses a novel ranking algorithm that includes node central-
ity as a measure of relevance for selecting the best SPARQL candidate query. Our
experiments with real-world datasets across several scientific domains, including the
official bioinformatics Question Answering over Linked Data (QALD) challenge,
as well as the CORDIS dataset of European projects, show that Bio-SODA outper-
forms publicly available KGQA systems by an F1-score of least 20% and by an even
higher factor on more complex bioinformatics datasets. Finally, we introduce Bio-
SODA UX, a graphical user interface designed to assist users in the exploration of
large knowledge graphs and in dynamically disambiguating natural language ques-
tions that target the data available in these graphs.

Keywords Question answering · Knowledge graphs · Ranking

 * Ana Claudia Sima
 ana-claudia.sima@sib.swiss

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-022-07414-w&domain=pdf

410 Distributed and Parallel Databases (2022) 40:409–440

1 3

1 Introduction

The problem of natural language processing over structured data has gained signifi-
cant traction, both in the Semantic Web community—with a focus on answering
natural language questions over RDF graph databases [1–3]—and in the relational
database community, where the goal is to answer questions by finding their seman-
tically equivalent translations to SQL [4–7]. Significant research efforts have been
invested in particular in open-domain question answering over knowledge graphs.
These efforts often use the DBpedia and/or Wikidata knowledge bases, that are com-
posed of structured content from various Wikimedia projects such as Wikipedia. A
growing ecosystem of tools is therefore becoming available for solving subtasks of
the KGQA problem, such as entity linking [8–11] or query generation [12]. How-
ever, most of these tools are specifically targeted at question answering over DBpe-
dia [13], not having been applied to other contexts, such as for scientific datasets.

On the one hand, encouraged by the recent success of machine learning methods,
several new benchmarks for training and evaluating KGQA systems have been pub-
lished [14, 15]. On the other hand, most of the existing datasets are synthetic (i.e.,
not based on real query logs) and generally limited to DBpedia or Wikidata, which
may not be representative of knowledge graphs for scientific datasets.

For example, one of the major question answering datasets over DBpedia, LC-
Quad [14], as well as its updated version, LC-Quad 2.0 [15], include only simple
multi-fact questions that connect at most two facts. In other words, these queries
cover at most two or three triple patterns, with a query graph spanning a maximum
of two hops, whereas real-world questions tend to be much more complex. In par-
ticular, a study of SPARQL query logs [16] across multiple knowledge graphs,
including DBpedia, has shown that a significant fraction of real-world queries have
10 triple patterns or more. It therefore remains unclear whether existing training sets
can serve as representative for real-world natural language processing engines over
knowledge graphs in general. All in all, data access and retrieval remain challenging
for domain experts who are not familiar with structured query languages, nor with
the data models of each scientific dataset that they use.

To illustrate the general problem of natural language processing over knowl-
edge graphs, consider the simple data model in Fig. 1. Here we see that a drug
could be a possible disease target for asthma (left branch), as well as potentially
having side effects such as triggering asthma symptoms (right branch). Now
consider the following natural language question: “Which drugs are used for
asthma?”. Note that our knowledge graph has no concept or property called used
for. Hence, this question cannot be easily translated without relying on external
knowledge (e.g. training data), given that used for cannot be directly mapped to
either of the two properties (possibleDiseaseTarget or sideEffect) shown in the
figure. However, node centrality metrics, such as the PageRank score of nodes
in the knowledge graph, can help capture “common sense” knowledge, e.g., that
asthma is more commonly a Disease, rather than a Side Effect.

As a step towards bridging the current gap in natural language processing
for knowledge graphs of scientific datasets, we introduce Bio-SODA, a system

411

1 3

Distributed and Parallel Databases (2022) 40:409–440

designed to answer natural language questions across knowledge graphs where
no prior training data is available. Bio-SODA relies on a generic graph-based
approach in order to translate natural language questions into SPARQL queries.
Furthermore, Bio-SODA is designed to compensate for incompleteness in the
data—either due to missing schema information or, to some extent, due to miss-
ing labels. Although these situations should not occur when following ontology
engineering best practices for representing data in RDF, our experience in work-
ing with real-world datasets shows that these problems are frequent in practice.

We make our prototype implementation available open-source1. We also make
available a live demo of Bio-SODA online2, where each of the datasets considered
in this paper can be queried. The prototype enables both keyword search, as well
as full question answering in English. We chose bioinformatics as our primary tar-
get domain, motivated by the rapid growth of publicly available RDF data in this
scientific domain. Specifically, around 8% of the Linked Open Data Cloud origi-
nates from the Life Sciences [18]. For the purpose of evaluating our system, we use
several real-world datasets stemming from different domains. For example, we use
the last bioinformatics question answering challenge released as part of the official
Question Answering on Large Databases (QALD) series, namely the QALD4 bio-
medical task [17]. Importantly, to-date there is no sufficiently large training data-
set of questions and corresponding SPARQL queries to enable the use of machine
learning approaches for end-to-end Question Answering in the biomedical field.

Fig. 1 Illustrative data model, simplified from the QALD4 benchmark datasets [17]. Consider the fol-
lowing question: “Which drugs are used for asthma?”. In the QALD4 dataset, “asthma” appears as both
a disease instance (shown in green), as well as a side effect (shown in red). The second interpretation
describes drugs that can trigger asthma symptoms. Therefore, it is the opposite of the user’s intended
question. However, the predicate used for in the question cannot be easily linked to either of the proper-
ties indicated through arrows in the image. Due to ambiguity, the question is difficult to translate cor-
rectly in the absence of external knowledge, without relying on training data (inferring that used for
implies drug targeting disease) (Color figure online)

1 Code at https:// github. com/ anazh aw/ Bio- SODA
2 See demo at http:// bioso da. expasy. org/

https://github.com/anazhaw/Bio-SODA
http://biosoda.expasy.org/

412 Distributed and Parallel Databases (2022) 40:409–440

1 3

Finally, to demonstrate the generalizability of Bio-SODA to other domains, we also
apply our system to an entirely different context, outside bioinformatics, namely on
the CORDIS dataset describing European Union (EU) funded research projects3.
This dataset is also used in the EU-project INODE (Intelligent Open Data Explora-
tion) [19].

This paper, which is an extended version of [20], makes the following
contributions:

• We introduce Bio-SODA—a novel natural language processing engine over
knowledge graphs that does not require prior training data (question-answer
pairs) for translating natural language questions into SPARQL.

• We define a novel ranking algorithm for selecting the best automatically gener-
ated SPARQL statements in response to a given natural language question. The
ranking algorithm combines syntactic and semantic similarity, as well as node
centrality in the knowledge graph. Many existing question answering systems
either rely on simple metrics for ranking, such as the length of the answer query
graph [6], or require extensive training data in order to learn a ranking function
[21]. To the best of our knowledge, our approach is the first to take into account
all three factors (syntactic and semantic similarity, as well as node centrality) for
ranking queries.

• Our experiments on various real-world datasets show that Bio-SODA outper-
forms state-of-the-art KGQA systems by 20% on the F1-score using the official
QALD4 biomedical benchmark and by an even higher factor on the more com-
plex bioinformatics dataset.

• Finally, in addition to the work presented in the conference version of this paper
(see [20]), here we introduce Bio-SODA UX, a prototype graphical user interface
enabling users to interact with knowledge graph data and disambiguate natural
language questions over the data dynamically; we demonstrate through selected
use cases how the interface can assist users in exploring the available data and in
finding the information of interest from the underlying knowledge graph.

The paper is structured as follows: Sect. 2 places our contribution in the context of
the related work. In Sect. 3 we introduce some of the challenges of natural language
processing over RDF-based knowledge graphs. In Sect. 4 we explain the high level
architecture of Bio-SODA through a concrete example from the biomedical domain.
In Sect. 5 we present the detailed system architecture of Bio-SODA followed by a
description of the Bio-SODA UX user interface in Sect. 6. Next, we describe the
datasets used for evaluation, their specific challenges and the results obtained, in
Sect. 7. In Sect. 8 we discuss lessons learned from building a natural language pro-
cessing system for real-world domain datasets. We outline directions for future work
in Sect. 9.

3 https:// cordis. europa. eu/ proje cts

https://cordis.europa.eu/projects

413

1 3

Distributed and Parallel Databases (2022) 40:409–440

2 Related work

The problem of natural language processing and question answering over struc-
tured data has been well-studied in recent years, with a growing number of pub-
lished systems, particularly in open-domain question answering. Recent surveys
on natural language interfaces to databases include [22, 23]. However, in this
paper we focus on natural language interfaces to RDF graph databases or RDF-
based knowledge graphs. Natural language interfaces to relational databases are
outside the scope of this paper.

In parallel, the biomedical field has seen a growth of dedicated systems for
question answering. Examples include GFMed [24] and Pomelo [25] – the two
highest ranked systems in the QALD4 biomedical challenge – as well as more
recent systems [26]. However, these are generally considered expert systems,
with lower generalizability to other domains, given that they extensively rely on
manually handcrafted rules and domain expertise.

Our work aims to bridge the gap between the two parallel efforts by solving
the common case in a domain-independent manner. For this, Bio-SODA relies
on a generic graph-based approach in order to generate a ranked list of candidate
SPARQL queries from a given question. We enable the addition of custom rules
only for special cases when needed.

Many recent KGQA systems [1, 3] have been evaluated using the LC-Quad
benchmark of 5000 questions over DBpedia [14]. Although this benchmark is an
important step forward, particularly for enabling machine learning approaches, it
does not include complex multi-hop questions, which makes it unclear how the
results would generalize to this case. For example, the current publicly available
implementation of the SPARQL query generation system SQG [12], would not
work for complex question answering on a new knowledge graph without signifi-
cant changes to the code base, as it targets question answering over DBpedia and
more specifically in the format required by the LC-Quad benchmark.

More recent KGQA systems, such as [3, 27], support multiple knowledge
graphs, but are limited to queries with a complexity of at most three triple pat-
terns. Similarly, existing end-to-end QA systems, based on machine learning
approaches, such as [28], can only handle simple questions. These approaches
have the added drawback that they only generate a single answer, as opposed to
multiple candidates. Furthermore, end-to-end approaches suffer from the lack of
explainability, which makes it challenging for users to validate the correctness of
the result. Explainability in this context has therefore become an active area of
research, with solutions proposed including translating back structured queries
into natural language sentences [29–31] or summarizing the entities in the results
[32].

Disambiguation is one of the major tasks of question answering systems. One
possible solution for this is to limit the interface to a controlled natural language
and involve the user in constructing questions from the available building blocks.
Sparklis [33] is a query building system that enables answering controlled natural
language questions over knowledge graphs out-of-the-box. However, this process

414 Distributed and Parallel Databases (2022) 40:409–440

1 3

is manual and therefore time-consuming, which makes it less convenient than a
true natural language interface.

One of the systems closest to ours is the KG-agnostic WDAqua-core1 [1]. The
system supports multiple knowledge bases in several languages. However, the
system is only available as a demo. Although the authors mention that node rel-
evance can in principle be taken into account for ranking, it is not clear whether the
approach was used in the evaluation or whether the ranking function was learned
based on training data. An updated version of this question answering system, QAn-
swer, is presented in [34], however this system is also limited to support at most 3
triple-pattern queries.

3 Challenges of natural language processing over knowledge graphs

In this section we summarise some of the challenges of natural language processing
over knowledge graphs, focusing on scientific knowledge graphs, which shape the
architecture of the Bio-SODA system (described in Sects. 4 and 5).

• Lack of training data.
 For many scientific knowledge graphs there is no sufficiently long and diverse

log of questions and their corresponding queries in order to derive a representa-
tive training set for a machine learning-based solution. So far, existing training
corpora have proven costly to construct [14], with the added drawback that any
semi-automatically generated dataset risks compiling a set of question-answer
pairs that are non-representative for the information needs of real users of the
KGQA system, e.g. domain experts.

• Rule-based approaches perform well, but are costly to build and maintain.
 So far, state-of-the-art solutions for question answering over generic RDF-

based knowledge graphs have been mostly rule-based systems, relying on manu-
ally handcrafted rules. For example, GFMed [24] and Pomelo [25], the top 2
ranked systems in the QALD4 biomedical challenge, have achieved very good
results in the challenge, but at the cost of very little generality. In essence, these
systems suffer from significant overfitting: to be applicable to a new domain,
their rule sets would need extensive or even complete rewriting. Moreover, even
for a new dataset within the same domain, for which the schema differs, new
rules need to be added in order to accommodate the differences.

 In some cases it is beneficial to incorporate a minimal set of rules in KGQA
systems, particularly for deriving complex concepts. However, this should be a
last resort and not the main translation mechanism, given that a large rule set is
hard to maintain and scale.

• Schema-less, incomplete data.
 One of the strengths of relational databases is to have a database schema which

enables strict data modelling and guarantees certain data integrity and data qual-
ity aspects. However, since RDF does not strictly enforce a (database) schema,
real-world datasets using RDF knowledge graphs often exhibit poor structure
[35, 36]. Typical examples are properties with missing or generic domains and

415

1 3

Distributed and Parallel Databases (2022) 40:409–440

ranges. In other words, a question answering system over RDF knowledge graphs
typically does not have complete schema information. Hence, an important step
when working with such incomplete knowledge graphs is to enrich the existing
(incomplete) schema, for example, by inferring property ranges and domains
based on instance-level data.

• Disambiguation.
 In many cases, different users have different expectations (query intents) when

asking the same question. An example would be the question What are all the
Big Data projects?, asked over the European Projects dataset. Possible interpre-
tations of this request are either to retrieve all projects in a Big Data call, or all
projects by institutions that have the term Big Data in their name or all projects
whose title or abstract include the terms Big Data etc. The system should ulti-
mately let users decide which interpretation was intended when asking the ques-
tion, also informing them of the range of possible options, according to the avail-
able underlying data.

4 Bio‑SODA: a high‑level perspective

In this section we use a motivating example to illustrate the natural language pro-
cessing pipeline of Bio-SODA.

Consider the data model illustrated in Fig. 2, which combines four different sci-
entific databases. The database Bgee on the left contains information about genes
and in which parts of the body (anatomical entity) a gene is expressed or absent. The
database Diseasome in the middle contains information about diseases, as well as

Fig. 2 Simplified data model based on the Bgee database and QALD4 [17] datasets. The data model is
a multigraph, including disjoint properties – such as isAbsentIn and isExpressedIn, as well as inverse
properties, such as possibleDiseaseTarget and possibleDrug. To make matters more complicated, a Side
Effect and a Disease can be described by the same terms, with instances of the two classes being related
via the sameAs property. As a result, even simple questions such as “which drugs might lead to strokes?”
are hard to automatically translate correctly in the absence of external knowledge (i.e. “lead to” = “side
effect”)

416 Distributed and Parallel Databases (2022) 40:409–440

1 3

drugs targeting each disease. In addition, the drugs are part of the pharmaceutical
database DrugBank (not explicitly shown in the figure). Finally, the database Sider
contains information about drugs and their side effects. Correspondences between
equivalent drugs in Sider and DrugBank are made through the sameAs property.

Further assume that a domain expert is interested in answering the question:
“What are the drugs for diseases associated with the BRCA 4 genes?”.

The natural language processing pipeline of Bio-SODA for answering this ques-
tion is illustrated in Fig. 3. In particular, the main steps involved in translating the
natural language question to SPARQL are as follows: first, Bio-SODA matches ques-
tion tokens, such as “drugs” and “diseases”, against the data stored in the database,
using an inverted index. This step is called Lookup Candidate Match. In this exam-
ple, all tokens are of length one, i.e. composed of a single word. The inverted index
enables retrieving not only the URI of each matching candidate, but also its PageR-
ank score. An example is shown in parentheses for the first two tokens in the Figure.
In addition, the inverted index retrieves the class and property names of the match
(omitted in the figure for simplicity). For example, the lookup for “BRCA ” retrieves
instances of the class Diseasome:Genes, where the rdfs:label property matches the
user token (“BRCA1”, “BRCA2”). A few simplified Inverted Index entries are pro-
vided in Table 1.

In the Ranking step, candidates are grouped together according to class/property5
and ranked according to string similarity and PageRank score.

In the Query Graph Construction step, all the ranked candidates are used to
construct a query graph which represents one possible answer or interpretation of
the natural language question. For simplicity, Fig. 3 only shows the query graph
obtained for the top ranked candidate matches. However, Bio-SODA generates
multiple alternative interpretations, for example, also including the interpretation
considering Sider:Drugs instead of the DrugBank:Drugs. This can be tested in the
demo page of Bio-SODA for QALD4.

Next, Bio-SODA generates the corresponding SPARQL query for each query
graph. Finally, the results are returned by executing the query on the target knowl-
edge graph (see bottom of Fig. 3).

5 Bio‑SODA: system architecture

The main building blocks of the Bio-SODA system architecture, shown in Fig. 4, are
the following:

• Preprocessing Phase: This phase includes building indexes for efficient lookup
as well as automatically generating a schema graph, which will serve as the basis

5 a FILTER for the token BRCA is created on the Diseasome:Genes class

4 Note that, based on the biomedical literature, mutations in the two BRCA genes, BRCA1 and BRCA2
(stemming from BReast CAncer) are known to be associated with multiple types of cancer.

417

1 3

Distributed and Parallel Databases (2022) 40:409–440

for constructing candidate SPARQL queries in response to user questions. This
phase is only executed once, when initialising the system.

Fig. 3 Simplified answer pipeline for the query “What are the drugs for diseases associated with the
BRCA genes?”. For the sake of simplicity, PageRank scores are solely displayed when more than one
match is found

418 Distributed and Parallel Databases (2022) 40:409–440

1 3

• SPARQL Query Generation Phase: This phase represents the natural language
query translation process and includes (1) looking up query tokens in the data-
base, (2) ranking the candidate tokens, (3) constructing the candidate query
graphs, (4) ranking the query graphs in order of relevance to the user question;
and finally (5) constructing a valid SPARQL query and presenting the results.

Additionally, the Bio-SODA UX interface6, discussed in Sect. 6, introduces a fur-
ther, iterative phase:

• User Dialog and Disambiguation:
 More and more RDF datasets are available in diverse scientific fields, yet for

practitioners, they are often difficult to explore. Indeed, the increasing size and
complexity of the data necessitate not only faster indexes but also smarter user
interfaces providing dynamic querying and filtering possibilities. Our experi-
ence in prototyping Bio-SODA showed that, in order to enable data exploration,
the system must also guide the user in the process of exploring the data models,
assist in disambiguating questions, and finally dynamically choose the most rel-
evant answers for specific use cases. To this purpose we designed the Bio-SODA
UX interface, which can be operated online7 to explore knowledge graphs and
assist users without technical knowledge of the underlying data models or query
languages in disambiguating questions targeting the data stored in the knowledge
graphs.

We will now discuss these phases in more detail.

Fig. 4 Bio-SODA System Architecture

7 Demo available at https:// bioso da. expasy. org/ bioso daUX/

6 Code also at https:// github. com/ anazh aw/ Bio- SODA, see biosodaUX folder

https://biosoda.expasy.org/biosodaUX/
https://github.com/anazhaw/Bio-SODA

419

1 3

Distributed and Parallel Databases (2022) 40:409–440

5.1 Preprocessing phase

The core component of this phase is the Indexing Module, which extracts the
Inverted Index as well as the Schema Graph of the RDF data sources:

• Inverted Index: This index stores the vocabulary of the system. More precisely,
all the properties that should be searchable from the RDF data store are indexed,
according to a configuration file that specifies the list of properties of interest
(by default, all string literals will be indexed). A further configuration option is
whether URI fragments should also be parsed and indexed. In this case, these
fragments are split by a predefined punctuation list, and through a camel case
regex (e.g., “possibleDiseaseTarget” will be indexed as the corresponding key-
words “possible disease target”).

 The inverted index is stored in a relational database for fast searches and it is
used to match tokens (sequences of keywords in a user query) against the RDF
data. More precisely, the index stores: keywords (N-grams of literals indexed),
the indexed instance URI, the class of this instance, the property from which
the keywords were indexed (e.g. label), as well as the PageRank score of the
instance (see Table 1). PageRank scores are computed using the approach pre-
sented in [32].

 We note that the size of the inverted index depends on a few characteristics
of the knowledge graph, including the verbosity of literals (i.e., attributes that
are strings), as well as the total number of attributes that should be indexed by
Bio-SODA (an explicit list of these attributes can be provided in the system).
For example, very verbose fields should not be indexed in their entirety, but per-
haps in a summary form. This variability reflects also in the size of the inverted
index compared to the size of the original dataset. Table 2 provides an overview
across the 3 datasets considered in this study. For example, the QALD4 and Bio-
informatics datasets also contain numerical data, which is not indexed, leading
to a smaller index size than in the case of CORDIS. Generally, in terms of time,
building the inverted index can take a few hours for large datasets, but this highly
depends on the performance and availability of the SPARQL endpoint through
which the dataset is accessible, given that the inverted index is built by querying
this endpoint. We note that we have not focused on optimizing the inverted index
construction and instead leave this as future work.

• Schema Graph Extractor: This module is used in order to enrich the (incomplete)
schema of the knowledge graph(s) using instance-level data from the RDF store.
The Schema Graph is essentially the accurate schema of the integrated RDF
data which Bio-SODA automatically extracts from data instances8. Moreover,
the Schema Graph serves as the basis for constructing candidate query graphs
from selected entry points (i.e., matches for tokens in a user question).

8 Note that multiple RDF sources can be combined, as long as they are semantically aligned - i.e. they
have at least one common concept, such as Gene.

420 Distributed and Parallel Databases (2022) 40:409–440

1 3

 Computing a Schema Graph allows the system to compensate for incomplete
schema information, for example, in cases where domains and ranges for proper-
ties are either missing or ill-defined. A second benefit of the Schema Graph is
that it enables integrating multiple data models from different knowledge graphs.
More precisely, since the search algorithm works at the level of the Schema
Graph, it is agnostic to the actual physical representation of the data, mean-
ing it can be easily extensible to support the case of multiple, complementary,
knowledge graphs in the future. The minimal requirement for achieving this is
that these KGs overlap, i.e., they have classes in common, such that they can be
joined in an integrated Schema Graph.

 Extracting the schema graph is achieved via SPARQL queries that com-
pute, for example, domains and ranges of all properties, based on the classes
of the instances which they connect. As a simplified example, a triple asserting
“Migraine → possibleDrug → Ibuprofen” will result in Disease → possibleDrug
→ Drug being added to the Schema Graph.

 Currently, as a minimum requirement we assume that each instance in the
RDF data has a well-defined class, i.e. an explicit rdf:type. If this is not the case,
additional preprocessing with external tools (for example, using RDF schema
discovery techniques [36]), would be required in order to properly define types
for all RDF instances.

Table 1 Inverted Index Sample

The lookup key is used for fast searches based on keywords from a user question. The remaining infor-
mation is used in attaching candidate matches to the Schema Graph (see description in Sect. 5) in order
to construct the corresponding query graphs. A lookup key can consist of multiple keywords. The same
lookup key can appear multiple times

Lookup Key URI Class Property PageRank

Stroke side_effects:C0038454 sider:side_effects sider:side-EffectName 0.34
Drug drugbank:drugs owl:Class rdfs:label 91
Drug sider:drugs owl:Class rdfs:label 2.3
Possible disease target diseasome:possible-

DiseaseTarget
rdf:Property uri_match 80

Table 2 Descriptions of the
size of the 3 public datasets
used in our evaluation and their
corresponding inverted index

Dataset Sources Dataset Size Index Size

QALD4-biomedical Drugbank,
Diseasome,
Sider

200 MB 150 MB

Bioinformatics Bgee, OMA 30 GB 8.5 GB
CORDIS EU projects 1 GB 1 GB

421

1 3

Distributed and Parallel Databases (2022) 40:409–440

We note here that indexing is a preprocessing step that is only required once,
when the system is initialized. Afterwards, updates to the RDF store can be incor-
porated periodically through incremental updates (appends) to the inverted index,
while the Schema Graph only needs to be recomputed in case of schema changes.

5.2 SPARQL query generation phase

Given a natural language question, the goal of the Bio-SODA system is to translate it
into a set of ranked candidate SPARQL queries, such that the top ranked query is the
closest to the user’s query intent. In the following, we detail the role of each compo-
nent involved in this translation process, namely the Lookup Module, the Candidate
Ranking Module, the Query Graph Construction Module, the Query Graph Ranking
Module and the Query Executor Module.

• Lookup Module:
 The lookup module has the role of retrieving the best candidate matches for

tokens identified in a user query. A token is defined by the longest sequence of
keywords that matches an entry in the Inverted Index (implemented in a rela-
tional database for fast searches). For example, in the question “What are the
possible disease targets of Ibuprofen?” the two tokens extracted will be “possible
disease target” (corresponding to an RDF property name) and “Ibuprofen” (cor-
responding to one or more Drug instances).

• Candidate Ranking Module:
 The lookup module can return a large number of candidate matches per token.

In order to find best candidate matches, the ranking module groups together
equivalent matches and ranks them in order of relevance to the initial query.
For example, instances of the class Drug with matching rdfs:label are grouped
together. In our running example illustrated in Fig. 3, the genes BRCA1 and
BRCA2 are a match for the keyword BRCA .

 Furthermore, both string similarity and node importance are taken into
account when ranking. Including the PageRank score as a measure of importance
in the knowledge graph reduces the influence of the quality of labels assigned
(labels which can be imprecise, see discussion in Sect. 3).

 The intuition behind this is that domain knowledge graphs usually cluster
around a few important concepts, which will be reflected in the PageRank scores
of the corresponding nodes. For example, UniProt9 [37], a protein knowledge
base containing more than 60 billion triples, currently includes only 177 classes.
Out of these, only few classes, such as Protein and Annotation, have a central
role, and will usually be the target of domain expert questions.

 Likewise, in the case of the CORDIS EU projects dataset (see Sect. 7 for
details), two different classes of Projects are available, EC-Project and ERC-Pro-
ject. However, there is significantly more information in the dataset for the first

9 https:// sparql. unipr ot. org/

https://sparql.uniprot.org/

422 Distributed and Parallel Databases (2022) 40:409–440

1 3

class. In the lack of query logs or handcrafted rules for mapping query tokens to
the correct candidates, the PageRank score can serve as a good proxy for ranking
candidates according to node centrality, similarly to the initial approach used by
web search engines [38].

 As an added benefit, scoring with PageRank also ensures that metadata
matches are prioritized. For example, Drug as a class name will rank higher than
an instance match.

 Finally, to ensure that candidate matches not only have good string similar-
ity, but are also semantically similar, word embeddings are also used in the can-
didate ranking. The similarity comparison ensures that spurious matches, such
as gene compared to oogenesis, are discarded based on a pre-defined similarity
threshold in the system configuration.

 Any word embeddings can in principle be used with Bio-SODA. For the two
main bioinformatics use cases considered in this paper, we use Word Vectors
extracted from PubMed, as described in [39]. The candidate ranking module pre-
sents to the user top N matches per query token, where N is configurable in the
system. We note that it is important to limit the number of matches per token for
performance reasons. This is because the total number of candidate queries gen-
erated for a question with T query tokens (i.e. concepts searched by the user) will
be in the worst case NT (there are up to N matches for each of the T tokens).

• Query Graph Construction Module:
 The goal of this module is to use the matches from the previous step to gen-

erate a list of candidate query graphs. We extend the approach presented in
[40] to translate matches to query graph patterns. More precisely, we apply the
iterative algorithm shown in Algorithm 1: for each set of candidate matches
(one match per query token), we augment the Schema Graph by attaching the
candidate matches to their corresponding class. Next, we find the minimal
subgraph that covers all matches. For this purpose, we solve the approximate
Steiner tree problem by computing the minimal spanning tree that covers one
match per token.

 Note that there might be multiple such subgraphs, given that two classes can
be connected via multiple properties. However, unless the user can be involved
in disambiguating, it is important to generate all the variants, given that two
equal-length subgraphs might actually have opposite semantics. Recall the exam-
ple shown in Fig. 2, where the properties e.g, isAbsentIn versus isExpressedIn
both connect the same two classes, but represent disjoint result sets.

 Finally, in some cases handcrafted rules for inferring new concepts or relation-
ships are required, due to the complexity of the corresponding query graphs. In
such cases translating user questions into SPARQL cannot be done via simple
entity linking methods. Therefore, if needed, our approach also supports adding
rules to derive implicit information from the original knowledge graph as part
of the question answering pipeline. These rules are implemented as sub-queries
similar to the SELECT SPARQL query form. In this case, the rule head is the
SPARQL query projection, and the rule body is the WHERE clause content.

423

1 3

Distributed and Parallel Databases (2022) 40:409–440

• Query Graph Ranking Module:
 The query graph ranking module plays an important role in presenting the

user with a meaningful, ordered list of results. In contrast to existing work, we
do not return the overall minimal subgraph as the top result, but rather the graph
that maximizes the sum of the match scores of the candidates covered. To under-
stand why this is the case, consider the following question: “What are the drugs
for asthma?”. This question translates to a 2-hop query graph, joining Drug and
Disease via the possibleDiseaseTarget path (see Fig. 2). However, one likely sce-
nario is that the description of a Drug instance includes the keyword asthma. In
this case, the minimal query graph would be 1-hop only, retrieving only Drug
instances that explicitly contain the keyword in the description, probably a small
subset of all instances which have the corresponding Disease as a possible target.
In this case, the minimal result would have good precision, but very low recall.

• Query Executor Module:
 Finally, the query executor translates the ranked query graphs into SPARQL que-

ries, assigning meaningful variable names, also adding human-readable fields to the
result set wherever possible. Importantly, we do not only return the best result, but
rather a ranked list of possible interpretations (top N, where N is configurable in the
system). This gives the user the opportunity to inspect the results in order to choose
only the interpretation (i.e. SPARQL query) that matches the question intent.

Algorithm 1: Iterative graph-based approach for constructing query
graphs from candidate matches
Data:
Mn×t: the matrix of ranked candidate matches, where
n = the number of candidate matches per token,
t = the number of tokens in the user question.

Mi = a set of candidates covering one match per token (i.e. the ith

row vector of the Mn×t matrix).
G: Schema Graph of the RDF data
Result: S: the ranked set of candidate query graphs

1 foreach Mi ∈ M do
2 QGi = φ (empty graph)

foreach candidate match Tj ∈ Mi do
3 if Tj = a RDF property then
4 Get domain D and range R of Tj from G;

Add D and R as vertices to QGi;
Add edge Tj between D and R in QGi;
if multiple domains / ranges for Tj then Create a new
copy of QGi per alternative;

5 else
6 Compute in schema graph G:

shortest paths between class of Tj and classes of other
matches Tz in Mi;
Add shortest paths to QGi

if multiple alternatives exist then
Create a new copy of QGi per alternative;

7 end
8 end
9 Add spanning tree extracted from QGi to result set S (Steiner tree

approximation)
10 end
11 S sorted = sort S by sum of match score of composing vertices. On a

tie, sort by the weight (i.e. the number of edges) of spanning tree.
return S sorted

424 Distributed and Parallel Databases (2022) 40:409–440

1 3

6 Bio‑SODA UX: user dialog interface

6.1 Design

Since natural language questions can be very ambiguous and two users might
mean different things when asking the same question, it is important that the sys-
tem helps the user in exploring the data and in finding the correct answer to a
question. Hence, we have built Bio-SODA UX, an interface that guides the user
in the data discovery process by disambiguating natural language expressions that
have multiple meanings.

To help the user understand the meaning of different results, the concepts are
visually represented in a graph of the data model, supported by a data-driven
color scheme and additional detailed information.

Bio-SODA UX provides more information about the underlying data and the
meaning of the results on hover/click. Once the user received the first answer, a
data table is populated with a result set. The immediate feedback of the system
helps the user to identify potential refinements of the question or opportunities
for disambiguation (i.e. choosing the right concepts). After each interaction with
the user, the data table is reloaded to match the current state. While the default
view shows only a few key features of the resulting data (e.g. Genes), the system
allows for adding other potentially relevant information as “alternative columns”
(e.g. gene descriptions), which the user can individually keep or discard. After
the user has successfully disambiguated, the full set of results can be downloaded
as a comma-separated values (CSV) file for further downstream processing.

6.2 Implementation

The implementation of Bio-SODA UX consists of two main parts - the user web
interface and the API. The web interface acts as a mediator between user and API.
The API connects to the underlying Bio-SODA question answering system, which
enables the natural language translation to SPARQL and query execution. The code
for both of these parts is publicly available.

The user interface was developed using the jQuery library10, the bootstrap
framework11 for graphical representations, and D3.js12 for graph and data table
visualization. Bio-SODA UX consists of three main parts, shown in Fig. 5: (1)
the query input field for entering the users’ natural language question; this part
is also used to present the intermediate results to the user and to allow the user
to disambiguate detected concepts via drop-down lists; (2) the node graph which
displays the data model to the user, including where the candidate matches attach
to the schema graph, providing some intuition of the data; (3) the data table on

10 https:// jquery. com
11 https:// getbo otstr ap. com
12 https:// d3js. org

https://jquery.com
https://getbootstrap.com
https://d3js.org

425

1 3

Distributed and Parallel Databases (2022) 40:409–440

the bottom of the page, displaying the results corresponding to the current user
selection.

The communication between the user interface and the Bio-SODA engine in
the back-end is implemented via a series of API calls. We summarise here the
main steps involved:

1. The front-end invokes the Bio-SODA algorithm when the user first inputs a natu-
ral language question. The back-end algorithm will respond to this initial call with
the following information:

• ranked candidate matches for each concept in the original question. For each
candidate match, the back-end will also indicate what is the class of the match
(e.g. a Gene, Protein or Anatomical Entity) - which helps attach the candi-
date match to the graph displaying all candidates. The user will then have the
option to select the best candidate match from the corresponding drop-down
list, while also inspecting the data model graph and seeing how each candi-
date connects. Furthermore, the response from the back-end includes addi-
tional information for each candidate, such as a label or a description of the

Fig. 5 Bio-SODA UX interface for knowledge graph exploration and query disambiguation. The three
main components of the interface are: 1) an input field which also provides drop-downs with example
candidate matches for each searched concept; 2) the fraction of the data model relevant to the question,
shown in graph form; clicking on any node will display additional information in the “Details” box on
the right; 3) the results table with options to extend with more attributes related to the concepts in the
question

426 Distributed and Parallel Databases (2022) 40:409–440

1 3

RDF entry it matched. This information can be seen by clicking on the cor-
responding node displayed in the graph. Since for any given term, there can
be many possible entries, in order to group results together, only one example
candidate is provided for each class.

• a SPARQL query is returned and executed, corresponding to the best answer
according Bio-SODA ranking algorithm. The results are displayed in the table on
the bottom of the page and the SPARQL query itself can be inspected by clicking
“Show SPARQL query”.

2. When disambiguating, the user can select a different entry from the drop-down list
of a given concept. This will trigger a new API call to the back-end, including the
original question and all the current selections for each matched concept, such that
the lookup and candidate ranking phases (see Sect. 5) in the Question Answering
Pipeline can this time be skipped. The back-end will return a new SPARQL query
and the corresponding results, according to the updated candidates selected by
the user.

6.3 Use case

Here, we will focus on selected example use cases considering Bio-SODA UX
applied over the bioinformatics database of gene expression Bgee.

6.3.1 Example 1

The user can first provide a natural language question, such as “What are the dros-
ophila anatomic entities at the embryo developmental stage?”. In response, Bio-
SODA UX returns the best-ranked answer in tabular form (see Fig. 6), while show-
ing examples of candidate matches for each concept in graph form. The graph shows
the connections between the chosen concepts and thus supports the user in under-
standing the underlying data model. For example, it can show how “anatomical enti-
ties” and “developmental stages” are linked through “gene expression conditions”.
The data table presents results matching the selected concepts and filters.

The user can analyze every matched concept, such as “drosophila” or “embryo”,
via the displayed graph. Furthermore, additional information, such as the URI of
the matched node, its class, the property that matched and the Page Rank score of
the node, can be displayed in the “Details” panel on the right side of the page, by
clicking on the matched node in the graph. By default, the system chooses the best
candidate match for every concept according to the Bio-SODA ranking algorithm
(see Sect. 5). The chosen candidates are also emphasized in the graph in the form of
larger nodes. However, alternatives are presented for every concept in the form of
drop-down menus. For example, an embryo can refer to either an organ (anatomical
entity) or a developmental stage. The user can disambiguate the intended meaning
by inspecting the available options and choosing the correct candidate match from

427

1 3

Distributed and Parallel Databases (2022) 40:409–440

the drop-down menu. The Bio-SODA UX supports the user by also assigning every
concept a distinct color, which is then used throughout the disambiguation process.

In our example, the term “drosophila” can be matched, among other meanings, to
an anatomical entity (i.e. an organ). This is because anatomical entities are sometimes
explicitly annotated with the species name, e.g. “crop (Drosophila)” - an equivalent
of the mammal stomach in the Drosophila (fly). However, the intended meaning of
the concept in the original question is the name of a species (i.e., a Taxon), for exam-
ple “Drosophila yakuba” or “Drosophila melanogaster” (the fruit fly).

By default, Bio-SODA ranks the crop higher, however, the ranking is not accu-
rate since we want to receive a list of all anatomical entities from Drosophila flies,
not only those explicitly annotated with the term “Drosophila”. The users can in
this case clarify their intended meaning by choosing the Taxon entry correspond-
ing to the “Drosophila” concept, from the drop-down list that is highlighted in pur-
ple in the query in Fig. 6. A further disambiguation required in this case is to then
select the “embryo” candidate match that corresponds to a developmental stage (i.e.,
“embryo stage”, the second match in the drop-down shown in Fig. 6), as opposed to
an anatomical entity (the top ranked candidate, chosen by default for this term). This
can be selected from the drop-down menu of the term highlighted in red in the fig-
ure. The different candidates are also illustrated in the graph below (nodes colored
in red), in order to facilitate understanding which match corresponds to the original
intent of the query.

Fig. 6 Bio-SODA UX example use case for the question “drosophila anatomic entities at the embryo
developmental stage”

428 Distributed and Parallel Databases (2022) 40:409–440

1 3

6.3.2 Example 2

A second example, shown in Fig. 7, illustrates the response to the question “What
are the genes with lung in the description?” This question reflects a user with more
knowledge of the data model, since it requests information related to a property of
Gene instances (i.e., those instances that explicitly contain the term lung in the gene
description). By default, Bio-SODA ranks the candidate match lung corresponding
to an anatomical entity (an organ) higher. This usage is much more common, which
will reflect in the Page Rank score of the anatomical entity match Lung, therefore
making it the top scored candidate for this term. However, this can lead to an incor-
rect or incomplete answer, as it would correspond to genes expressed in the lung
organ, not those annotated with the term. Nevertheless, by inspecting the graph the
user can easily clarify the intended meaning, by selecting the entry corresponding to
an example of a gene description. This is the node attached to the Gene class, shown
in the centre of Fig. 7.

In the drop-down list for the term lung, highlighted in purple in the original ques-
tion, this is the third ranked candidate match. Hovering over the candidate matches
will highlight the corresponding nodes in the graph with a red border, making it eas-
ier to understand where they attach in the original data model. Moreover, clicking on
any of the nodes (e.g. the purple node attached to the Gene class, shown with a red
border in Fig. 7) will also display more information about the candidate, including
which class and property matched (i.e. the description, http:// purl. org/ dc/ terms/ descr
iption, of a Gene, http:// purl. org/ net/ orth# Gene).

The user can optionally inspect the generated SPARQL statement by clicking
on Show SPARQL query on the corresponding button in the page, which will also
confirm the correct answer for a more advanced user, while helping a novice user
better understand how to obtain information for this question via SPARQL queries.

Fig. 7 Bio-SODA UX example use case for the question “genes with lung in the description”

http://purl.org/dc/terms/description
http://purl.org/dc/terms/description
http://purl.org/net/orth#Gene

429

1 3

Distributed and Parallel Databases (2022) 40:409–440

Finally, the user can further find out more details about the retrieved genes by fol-
lowing the clickable links provided in the results table.

7 Experiments

In this section we evaluate the F1-score performance of Bio-SODA for translat-
ing natural language questions to SPARQL and compare it against state-of-the-art
systems for querying RDF-based knowledge graphs. Note that we focus on top-
performing open-source systems that are publicly available for testing and do not
require training data [22].

In particular, we tested Sparklis [33], a generic query builder system for knowl-
edge graphs13. Furthermore, we compared against GFMed [24] which was top
ranked in the QALD4 biomedical challenge and specifically designed for this data-
set. Apart from this, we use GFMed’s publicly available grammar14 to evaluate how
the system performs outside of the official QALD4 biomedical dataset. In addition,
we compared our approach against SQG [12], a system for query generation over
knowledge graphs15.

7.1 Datasets

Three datasets were considered for evaluating Bio-SODA, see Table 3. Importantly,
all three are real-world, in-use datasets. For each dataset, we briefly highlight the
specific challenges that need to be tackled in the context of designing a generic
question answering system:

1. The QALD4 biomedical dataset is composed of Sider, DrugBank and Diseasome.
This dataset includes several challenges such as multiple Drug classes and identi-
cal terms describing both Disease and Side Effects instances, which are connected
via owl:sameAs properties.

2. The bioinformatics dataset is composed of the Bgee (gene expression) [41] and
OMA (orthology) [42] RDF stores. Given the highly specialized domain infor-
mation contained in these sources, a particularity of this dataset is that questions
can include complex concepts which translate to long SPARQL query graphs. An
added challenge deriving from this is that the same concepts can be connected
through multiple equal-length paths with semantically different or even opposite
meanings.

3. The CORDIS dataset of EU-funded projects. Although this dataset has a simpler
schema, the challenge here is that questions can have a higher degree of ambigu-
ity. In some cases, multiple interpretations are valid – for example, many terms are

13 A live demo can be tested with any SPARQL endpoint at http:// www. irisa. fr/ LIS/ ferre/ spark lis/
14 See http:// cs- gw. utcluj. ro/ ~anca/ GFMed/ index. html
15 Available at https:// github. com/ AskNo wQA/ SQG/

http://www.irisa.fr/LIS/ferre/sparklis/
http://cs-gw.utcluj.ro/%7eanca/GFMed/index.html
https://github.com/AskNowQA/SQG/

430 Distributed and Parallel Databases (2022) 40:409–440

1 3

reused often and in a variety of contexts, such as “Big Data”. This can be either
part of a project title, a topic or even an organization name. Therefore, identify-
ing the query intent in some cases (e.g. Show Big Data projects) cannot be done
without user disambiguation.

7.2 Queries

We have reused the official 50 queries of the QALD4 biomedical challenge16. We
do not distinguish between training and test queries. Indeed, we report performance
metrics for all systems we tested across the entire set of 50 queries. Given that the
test set was also available to participants in the official challenge, we believe this to
be a fair evaluation. We do not change the questions in the official challenge, not
even in cases where we could identify mistakes in the question. Furthermore, as
opposed to previous work using this benchmark [43], we do not materialize triples
based on owl:sameAs statements and only use the exact dataset, as provided in the
official benchmark.

For the bioinformatics dataset, in collaboration with domain experts, we created
a benchmark of 30 queries, in increasing order of complexity, across two datasets,
namely Bgee and OMA. The queries represent real information needs of domains
experts within the field of gene expression and orthology, using the publicly avail-
able RDF data of Bgee17 and OMA18. The average number of triple patterns per
query here is 7 (not taking into account joint queries between the two sources, which
have even higher complexity), with some questions jointly targeting 4 entities or
more (Gene, Species, Anatomical Entity, Developmental Stage). In contrast, in exist-
ing benchmarks, such as LC-Quad [14], queries with only 2 entities are already con-
sidered complex.

In order to test Bio-SODA using an entirely different domain, using the CORDIS
dataset of EU funded projects, we created a test set of 30 queries in increasing order
of complexity. Given the relatively simple structure of this data model, the aver-
age number of triple patterns per query is close to that of existing KGQA bench-
marks [14], with an average 2.3 triple patterns per query. However, the complexity
stems from the usage of filters, literals in the query, as well as the higher degree of
ambiguity.

Table 3 Descriptions of the 3 public datasets used in our evaluation

Dataset Sources #Classes #Triples Size on Disk

QALD4-biomedical Drugbank, Diseasome, Sider 12 0.69 M 200 MB
Bioinformatics Bgee, OMA 37 430 M 30 GB
CORDIS EU projects dataset 26 6.5 M 1 GB

16 https:// github. com/ ag- sc/ QALD/ blob/ master/ 4/ data
17 https:// bgee. org/ sparql
18 https:// sparql. omabr owser. org/ sparql

https://github.com/ag-sc/QALD/blob/master/4/data
https://bgee.org/sparql
https://sparql.omabrowser.org/sparql

431

1 3

Distributed and Parallel Databases (2022) 40:409–440

Queries across the three datasets include aggregations, negations, and make
extensive use of filters.

All questions, as well corresponding SPARQL queries, are available in the Evalu-
ation folder of our GitHub repository19.

7.3 Results

We use the standard evaluation metrics of precision (P), recall (R) and F1-score,
macro-averaged over all questions in the dataset. For Bio-SODA in particular,
although the system generates a ranked list of possible interpretations, we report
numbers based on the top answer only (Precision@1). More precisely, these
results are evaluated based on the top answer provided by the default ranking of
the Bio-SODA system, without any user disambiguation involved. In the Bio-
SODA UX interface, this corresponds to the answer (and corresponding SPARQL
query) shown to the user by default in response to a given question, without any
manual intervention from the part of the user. The results are presented in Table 4
and discussed in the following section. For easy accessibility to the Bio-SODA
system, as well as reproducibility of the results, we also provide a demo page for
each of the three datasets, available online (see Sect. 1).

We will now discuss the performance of each system in more detail.
GFMed shows the highest F1-score for the QALD4 dataset. However, it can-

not (nor was it intended to) be used outside this dataset without rewriting the set
of grammar rules that are strictly designed for question answering over specific
releases of Diseasome, Drugbank and Sider. Hence, the F1-score for the bioinfor-
matics dataset and the CORDIS datasets is 0.

SQG on the other hand, originally evaluated on the LC-Quad [14] benchmark,
does not support complex multi-hop questions, nor filters or queries involving
literals. “Show me projects which started in 2020?” is an example of such a query,
where 2020 is a numerical literal, as opposed to a linkable entity. While in the
case of LC-Quad these limitations do not impact performance, all three datasets
considered in our evaluation include such features, which explains the poorer per-
formance of SQG: an F1-score of 0.42 in the case of QALD4, only 0.33 in the
CORDIS dataset, and finally 0.16 in the case of the bioinformatics dataset. We
note that these results are a theoretical best, since for SQG we assume perfect
entity and property linking, leading to the highest performance it can achieve.

Finally, Sparklis is not a question answering system per-se, but rather a query
builder, which helps users form the correct question by composing building
blocks starting from examples of class names, properties, values etc. Therefore, in
order to answer questions, we needed to rephrase them from the available build-
ing blocks manually. On the positive side, we found Sparklis to be a powerful
system, because it enables building a rich variety of query types out-of-the-box.

19 Evaluation in https:// github. com/ anazh aw/ Bio- SODA/

https://github.com/anazhaw/Bio-SODA/

432 Distributed and Parallel Databases (2022) 40:409–440

1 3

To achieve this, only the SPARQL endpoint URL of the target RDF data store is
required.

Using the query building methodology of Sparklis, 44 out of 50 questions in the
QALD4 biomedical benchmark can be answered. Furthermore, all questions in the
CORDIS dataset can also be answered. Although this result might seem surprising,
recall that the major challenge of this dataset is disambiguation. The manual query
building process in Sparklis addresses exactly this problem, provided that the user
knows very well how the data are structured and semantically represented. There-
fore, on the negative side, we found that the query building methodology requires
precise understanding of the data model, especially if multiple classes have the same
label, as is the case in QALD4.

For example, answering the question “Which drugs might lead to strokes?”
requires knowing that the Drugs class to be used is the one in Sider, as opposed to
the one in Diseasome. Furthermore, formulating questions in Sparklis is a manual
and therefore time-consuming process. Even when making the strong assumption
that the user has perfect knowledge of the data model, as well as of the features of
Sparklis (for example, how to correctly formulate aggregations, which can be chal-
lenging), the minimal number of manual steps required to formulate questions is
on average 5.5 interactions per question for QALD4 and 6.2 for CORDIS, with a
maximum of 10 for the more complex questions. In most cases, the question result-
ing from composing the building blocks will be significantly different from a true
natural language question.

We did not pursue this approach on the bioinformatics dataset, because complex
concepts in this dataset (ortholog, paralog) cannot be expressed through the query
building mechanism. More precisely, Sparklis does not support complex property
paths.

Table 4 Performance of
translating natural language
questions to SPARQL. By
considering a perfect user of
the Sparklis tool, the minimum
number of manual steps for
composing a query (averaged
over all queries) is shown
between parentheses

Datasets and Systems Precision Recall F1

Dataset 1: QALD4
GFMed 1 0.99 0.99
SQG 0.42 0.42 0.42
Sparklis (5.5 steps/query) 0.88 0.88 0.88
Bio-SODA 0.61 0.60 0.60
Dataset 2: Bioinformatics
GFMed 0 0 0
SQG 0.16 0.16 0.16
Sparklis - - -
Bio-SODA 0.6 0.6 0.6
Dataset 3: CORDIS
GFMed 0 0 0
SQG 0.33 0.33 0.33
Sparklis (6.2 steps/query) 1 1 1
Bio-SODA 0.66 0.66 0.66

433

1 3

Distributed and Parallel Databases (2022) 40:409–440

Bio-SODA is a middle-ground between the generic, but manual approach of
Sparklis, and the grammar-based approach of GFMed, which is not easily transfer-
able to a new domain. More precisely, Bio-SODA achieves relatively good perfor-
mance (around 0.6 F1-score) across the three datasets without requiring manual
intervention. The only exception are two custom rules for the bioinformatics dataset,
which help answer 4 out of 30 queries.

Although GFMed has the best results for QALD4, it cannot be used outside this
dataset without a complete rewriting of the grammar rules. Sparklis also achieves
better results on the two datasets tested, but with the big disadvantage that it is a
manual approach, where the user must understand the data model in order to com-
pose questions correctly. Our findings are further detailed in the Evaluation folder in
our GitHub repository.

7.4 Impact of ranking algorithm

In this section we study the impact for our ranking algorithm on the performance of
Bio-SODA. In particular, we conducted an ablation study to quantify the importance
of ranking by PageRank score of candidate matches. For this purpose, we disable our
ranking algorithm and instead use a simple string similarity-based ranking algorithm
for candidate matches, returning the overall minimal subgraph as the top answer.

The results, displayed in Table 5, show that ranking makes a crucial difference,
in particular for the CORDIS dataset. The reason for this is that for most of the
keywords that describe metadata (such as class names, like Project Topic or Sub-
ject Area), there exists in the dataset a project whose acronym matches exactly. For
example, there exist projects with acronyms such as Topic, Area, Host, Code, which
are (according to string similarity only) classified as best matches for tokens in the
original question. Constructing the overall minimal subgraph leads to wrong results
in almost all cases, except for only 3 out of 30 questions, where there is no ambigu-
ity. Note that adding no other change aside from considering PageRank scores in
ranking enables answering 17 more queries out of 30 for this dataset.

7.5 Error analysis and remaining problems

In the QALD4 biomedical benchmark, Bio-SODA correctly answered 30 out of 50
questions with an additional 2 partially correct. We note that 1 question in QALD4

Table 5 Ablation study on the Bio-SODA performance of translating natural language questions to
SPARQL: (a) SPARQL candidate query ranking with node centrality measure versus (b) traditional rank-
ing approach with string similarity and overall minimal subgraph as top result

Dataset (a) Correct with Bio-SODA Ranking (b) Correct with String
Similarity Ranking

QALD4 30/50 23/50
Bioinformatics 18/30 12/30
CORDIS 20/30 3/30

434 Distributed and Parallel Databases (2022) 40:409–440

1 3

cannot be answered by Sparklis nor Bio-SODA due to missing label information.
More precisely, the instance http://www4.wiwiss.fu-berlin.de/diseasome/resource/
genes/EDNRB is the target of the question “Which genes are associated with
Endothelin receptor type B?”. However, the label Endothelin receptor type B is not
assigned in the official dataset of the benchmark, nor can it be derived from the URI
fragment, for example. Upon closer inspection, it becomes clear that the question is
ill-formulated. Since EDNRB itself is a gene, the correct question should be “Which
diseases are associated with EDNRB?”. In total, we have found at least 4 out of 50
entries in the dataset to contain errors, either in the question formulation, or in the
ground truth answer. These have already been discussed in previous studies [43].

An additional number of questions cannot be answered by Bio-SODA across the
three datasets due to other reasons. We summarise them in Fig. 8, explained in the
following:

• Aggregations. Our system currently does not support questions that require
aggregations, such as Count, Sum etc. An example of such a question would be
Count the projects in the life sciences domain. A possible solution to this would
be to include pre-defined patterns or training a question classifier for this pur-
pose.

• Superlatives/Comparatives. Another unsupported feature in the current prototype
is the use of quantifiers (superlatives or comparatives). An example would be
Which drug has the highest number of side-effects?

• Conjunctions. Conjunctive questions which involve multiple instances of the
same class are not supported in the current prototype. An example of such a case
is List drugs that lead to strokes and arthrosis. This limitation derives from our
methodology in computing the minimal subgraph covering candidate matches,

Fig. 8 Bio-SODA failure analysis. Out of the total 50 questions in the QALD4 biomedical benchmark,
Bio-SODA cannot correctly answer 20. A further 12 out of 30 cannot be answered in the bioinformatics
dataset, mainly due to query complexity (some queries having more than 10 triple patterns). Finally, on
the CORDIS dataset 10 out of 30 queries cannot be answered, a large fraction of which include features
currently unsupported in Bio-SODA: aggregations, comparatives, conjunctions etc

435

1 3

Distributed and Parallel Databases (2022) 40:409–440

which would require special handling for cases when multiple candidates of the
same class are present in a question.

• Properties with same domain and range. Stemming from the same limitation
mentioned above, these properties are currently not supported. In QALD4, the
only instance of this is the diseaseSubtypeOf property, which has the Disease
class as both domain and range. In the bioinformatics dataset we handle sym-
metric properties describing ortholog and paralog genes through custom rewrite
rules.

• Ranking. One of the major sources of failure in our prototype remains ranking.
In the QALD4 dataset, ranking problems affect 4 out of 50 queries. An example
is: What are the diseases caused by Valdecoxib?. Here, the system cannot cor-
rectly choose Drug - sideEffect - Side_Effect over the alternative Disease - possi-
bleDrug - Drug. The reason for this is that the Disease class matches exactly the
term in the question, while the Drug class in Diseasome has a higher PageRank
score than the one in Sider.

 A more complex corner-case is part of the bioinformatics dataset, What are
the genes with lung in the description? The term lung is commonly used to refer
to an Anatomical Entity. This is also reflected in the node importance of this
match in the dataset. Therefore, the system cannot correctly determine that, in
the context of this question, it should instead be considered part of the descrip-
tion property of a Gene. The correct candidate match scores very low, resulting
in the correct answer also being ranked too low. However, through user disam-
biguation in the Bio-SODA UX, this question can also be correctly answered.
The process is shown in Fig. 7 and a discussion is included in Sect. 6.3. A simi-
lar example from QALD4 is Which drugs have bipolar disorder as indication?,
where bipolar disorder is matched against a Disease instead of a drug indica-
tion. In these cases user disambiguation, at the level of candidate matches, is an
important component in solving the problem.

• Incomplete information. This problem affects mainly the results in the QALD4
dataset, more precisely 4 out of 50 queries. We have already covered the example
of the question targeting the EDNRB gene, which lacks the correct label in the
official dataset. We currently do not enrich the inverted index with synonyms or
external information, which means questions must be formulated in terms of the
available vocabulary of the dataset. However, this limitation could be addressed
by indexing synonyms from external data sources. Additional three questions
cannot be answered because they refer to URIs that do not have any class defined
in the data, therefore the system cannot attach the candidate matches anywhere
in the Schema Graph.

 An example is the drugType property, which can take two values, either http://
www4. wiwiss. fu- berlin. de/ drugb ank/ resou rce/ drugt ype/ exper iment al or http://
www4. wiwiss. fu- berlin. de/ drugb ank/ resou rce/ drugt ype/ appro ved. We believe a
better modelling of the data should have provided, for example, either these as a
xsd:anyURI datatype, given they are not used for any other purposes, or defined
some class for both.

• Query complexity (difficult queries). The bioinformatics dataset covers queries
with high complexity, which are difficult to solve especially since they include

http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/experimental
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/experimental
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/approved
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugtype/approved

436 Distributed and Parallel Databases (2022) 40:409–440

1 3

symmetric properties, with multiple instances of the same class, each filtered
according to different conditions.

 An example of such a question is: Retrieve Oryctolagus cuniculus’ proteins
encoded by genes that are orthologous to Mus musculus’ HBB-Y gene. Here, the
task is to retrieve Gene instances in a particular Taxon (species), namely the rab-
bit (Oryctolagus cuniculus), which are orthologs (symmetric property) of a sec-
ond instance of Gene, labeled HBB-Y, in a different species, namely the mouse
(Mus musculus). The resulting query has over 15 triple patterns, with 3 filters
(the 2 species names plus the gene name).

• Others. Two questions in the QALD4 dataset have particular challenges, the
first being a stemming error. In the question Give me drugs in the gaseous state,
the term gaseous cannot be correctly stemmed to gas. The second type of error
is due to unsupported ASK queries, e.g. Are there drugs that target the Protein
kinase C beta type?. Here, Bio-SODA retrieves examples of such drugs, instead
of the boolean True. However, we do not consider this a fundamental limitation
and a question type classifier could be added in future work.

We report a more detailed analysis of all systems considered in this paper in the
https:// github. com/ anazh aw/ Bio- SODA/ tree/ master/ Evalu ation in our GitHub
repository.

8 Lessons learned

Considering the challenges of question answering over knowledge graphs intro-
duced in Sect. 3, we highlight the following design goals for natural language pro-
cessing engines:

• Generality: The system should be easily adaptable to new datasets. In particu-
lar, the system should be able to answer questions in a new domain with mini-
mal manual intervention and without relying on extensive training data, which
is hard to obtain in many domains. Along this line, a desirable property is also
the ability to cope with “real-world” datasets, dealing with incompleteness in the
data, for example in the form of:

– missing schema information (should be inferred from instance-level data);
– missing labels (should be incorporated from URIs whenever meaningful);

• Extensibility: The system should easily work with multiple datasets (provided
they are already semantically aligned—i.e., data integration is a prior require-
ment). Many studies introduce possible approaches for data integration, includ-
ing a recent approach for ontology-based data integration, covering one of the
bioinformatics use cases presented in this paper [44].

• Configurability: The database owner must be able to specify which properties
(e.g. labels, descriptions) should be searchable using the system. Our experience
with real-world datasets showed that in general it is not desirable for all proper-
ties to be indexed and thus be searchable. As an example, in many cases, fields

https://github.com/anazhaw/Bio-SODA/tree/master/Evaluation

437

1 3

Distributed and Parallel Databases (2022) 40:409–440

in the queried data sources can be either redundant or too verbose. In bioinfor-
matics, these are abstracts of papers that are assigned as values to an RDF prop-
erty, whose length can therefore be up to 300 words. Similarly, in the CORDIS
dataset, these are the abstracts of the EU projects. These cases should be han-
dled through a dedicated approach, for example, based on classical information
retrieval methods as discussed in [45].

• Explainability: The system should clearly guide the user through how a ques-
tion was processed and interpreted. This starts from explaining which concepts
were matched in relation to the original question, continuing with how these can-
didate matches are composed together in a query graph in order to provide the
final SPARQL query. Finally, the query results should be understandable as well.
Therefore, the projected variable names should also be meaningful.

9 Conclusions and outlook

In this paper we have introduced Bio-SODA, a question answering system for
domain knowledge graphs, which we evaluated across three real-world datasets per-
taining to different domains: biomedical, gene orthology and gene expression, and
finally EU-funded projects. Our results have shown that Bio-SODA outperforms
state-of-the-art systems that are publicly available for testing by a 20% F1-score
improvement and more. The main advantage of Bio-SODA over existing open-
source systems is that it can handle complex, multi-triple pattern queries without
requiring user guidance and training data. Bio-SODA uses a novel ranking approach
that takes into account both string and semantic similarity, as well as node central-
ity of candidate matches. Our experiments demonstrate that our ranking approach
improves the quality of results, particularly in the context of datasets which can suf-
fer from redundancy and imprecise labels.

We have also introduced Bio-SODA UX, a graphical interface allowing users to
explore the underlying data models and disambiguate their questions dynamically.
As future work, we plan to consider the users’ feedback for learning to rank the
best answer among resulting candidate queries. We also plan to evaluate the average
number of disambiguation steps required for clarifying the semantics of user ques-
tions. As a long term direction for future research, we envision compiling a bench-
mark of cross-domain question-answer pairs, similarly to the Spider benchmark in
the relational database world [46], which would enable research into refining pre-
trained KGQA models for new domains.

Acknowledgements We thank the Swiss National Science Foundation for funding (NRP 75, grant
407540_167149), Lukas Blunschi for the implementation of the SODA system for keyword search system
over relational databases [47], on which our prototype is based, and Katrin Affolter for important contri-
butions to the natural language processing pipeline in Bio-SODA. We thank Chiara Gabella and Séverine
Duvaud from the SIB User Experience Team for their advice on the design of Bio-SODA UX.

Funding Open access funding provided by University of Lausanne.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

438 Distributed and Parallel Databases (2022) 40:409–440

1 3

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering system over the
semantic web. Semantic Web Preprint 2018, 1–19 (2018)

 2. Zheng, W., Yu, J.X., Zou, L., Cheng, H.: Question answering over knowledge graphs: question
understanding via template decomposition. In: Proceedings of the VLDB Endowment 11, pp. 1373–
1386 (2018)

 3. Vakulenko, S., Garcia, J.D.F., Polleres, A., de Rijke, M., Cochez, M.: Message Passing for Complex Ques-
tion Answering over Knowledge Graphs. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 1431–1440 (2019)

 4. Li, F., Jagadish, H.V.: Constructing an interactive natural language interface for relational databases. Proc.
VLDB Endowm. 8, 73–84 (2014)

 5. Li, F., Jagadish, H.V.: Understanding natural language queries over relational databases. ACM SIGMOD
Rec. 45, 6–13 (2016)

 6. Saha, D., Floratou, A., Sankaranarayanan, K., Minhas, U.F., Mittal, A.R., Özcan, F.: ATHENA: an ontol-
ogy-driven system for natural language querying over relational data stores. Proc. VLDB Endowm. 9,
1209–1220 (2016)

 7. Brunner, U., Stockinger, K.: ValueNet: a natural language-to-SQL system that Learns from Database
Information. International Conference on Data Engineering (ICDE) (2021)

 8. Sakor, A., Singh, K., Vidal, M.-E.: An Entity and Relation Linking Framework over DBpedia, FALCON
(2019)

 9. Ferragina, P., Scaiella, U.: Tagme: on-the-fly annotation of short text fragments (by wikipedia entities). In:
Proceedings of the 19th ACM international conference on Information and knowledge management,
pp. 1625–1628 (2010)

 10. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of
documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8 (2011)

 11. Olieman, A., Azarbonyad, H., Dehghani, M., Kamps, J., Marx, M.: Entity linking by focusing DBpedia
candidate entities. In: Proceedings of the First International Workshop on Entity Recognition & Disam-
biguation, pp. 13–24 (2014)

 12. Zafar, H., Napolitano, G., Lehmann, J.: Formal query generation for question answering over knowl-
edge bases. In: European Semantic Web Conference. Springer, Berlin, pp. 714–728 (2018)

 13. Singh, K., Lytra, I., Radhakrishna, A.S., Shekarpour, S., Vidal, M.-E., Lehmann, J.: No one is perfect:
analysing the performance of question answering components over the dbpedia knowledge graph. arXiv
preprint arXiv: 1809. 10044 (2018)

 14. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: Lc-quad: a corpus for complex question answer-
ing over knowledge graphs. In: International Semantic Web Conference. Springer, Berlin, pp. 210–218
(2017)

 15. Dubey, M., Banerjee, D., Abdelkawi, A., Lehmann, J.: Lc-quad 2.0: a large dataset for complex ques-
tion answering over wikidata and dbpedia. In: International Semantic Web Conference. Springer, Ber-
lin. pp. 69–78 (2019)

 16. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query logs. VLDB J. 2019,
1–25 (2019)

 17. Unger, C., Forascu, C., Lopez, V., Ngomo, A.-C.N., Cabrio, E., Cimiano, P., Walter, S.: Question
answering over linked data (QALD-4) (2014)

 18. Hasnain, A., Mehmood, Q., Zainab, S.S., Saleem, M., Warren, C., Zehra, D., Decker, S., Rebholz-
Schuhmann, D.: Biofed: federated query processing over life sciences linked open data. J. Biomed.
Semant. 8, 13 (2017)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1809.10044

439

1 3

Distributed and Parallel Databases (2022) 40:409–440

 19. Amer-Yahia, S., Koutrika, G., Braschler, M., Calvanese, D., Lanti, D., Lücke-Tieke, H., Mosca, A., de
Farias, T.M., Papadopoulos, D., Patil, Y., et al.: INODE: building an end-to-end data exploration system
in practice. ACM SIGMOD Rec. 50, 23–29 (2021)

 20. Sima, A.C., de Farias, T.M., Anisimova, M., Dessimoz, C., Robinson-Rechavi, M., Zbinden, E., Stock-
inger, K.: Bio-SODA: enabling natural language question answering over knowledge graphs without
training data. In: 33rd International Conference on Scientific and Statistical Database Management, pp.
61–72 (2021)

 21. Maheshwari, G., Trivedi, P., Lukovnikov, D., Chakraborty, N., Fischer, A., Lehmann, J.: Learning to
rank query graphs for complex question answering over knowledge graphs. In: International Semantic
Web Conference. Springer, Berlin, pp. 487–504 (2019)

 22. Affolter, K., Stockinger, K., Bernstein, A.: A comparative survey of recent natural language interfaces
for databases. VLDB J. 28, 793–819 (2019)

 23. Chakraborty, N., Lukovnikov, D., Maheshwari, G., Trivedi, P., Lehmann, J., Fischer, A.: Introduction
to Neural Network based Approaches for Question Answering over Knowledge Graphs. arXiv preprint
arXiv: 1907. 09361 (2019)

 24. Marginean, A.: Question answering over biomedical linked data with grammatical framework. Seman-
tic Web 8, 565–580 (2017)

 25. Hamon, T., Grabar, N., Mougin, F., Thiessard, F.: Description of the POMELO System for the Task 2
of QALD-2014. CLEF (Working Notes) 1212, 28 (2014)

 26. Hamon, T., Grabar, N., Mougin, F.: Querying biomedical linked data with natural language questions.
Semantic Web 8, 581–599 (2017)

 27. Diefenbach, D., Giménez-Garcıa, J., Both, A., Singh, K., Maret, P.: Designing a portable Question
Answering System over RDF data, QAnswer KG (2020)

 28. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question answering over
knowledge graphs on word and character level. In: Proceedings of the 26th international conference on
World Wide Web, pp. 1211–1220 (2017)

 29. Deutch, D., Frost, N., Gilad, A.: Explaining Natural Language query results. VLDB J. 29, 485–508
(2020)

 30. Ngomo, A.-C.N., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, I don’t speak SPARQL:
translating SPARQL queries into natural language. In: Proceedings of the 22nd International Confer-
ence on World Wide Web, pp. 977–988 (2013)

 31. Kokkalis, A., Vagenas, P., Zervakis, A., Simitsis, A., Koutrika, G., Ioannidis, Y.: Logos: a system for
translating queries into narratives. In: Proceedings of the 2012 ACM SIGMOD International Confer-
ence on Management of Data, pp. 673–676 (2012)

 32. Diefenbach, D., Thalhammer, A.: Pagerank and generic entity summarization for rdf knowledge bases.
In: European Semantic Web Conference. Springer, Berlin. pp. 145–160 (2018)

 33. Ferré, S.: Sparklis: an expressive query builder for SPARQL endpoints with guidance in natural lan-
guage. Semantic Web 8(3), 405–418 (2017)

 34. Diefenbach, D., Migliatti, P.H., Qawasmeh, O., Lully, V., Singh, K., Maret, P.: QAnswer: a Question
Answering prototype bridging the gap between a considerable part of the LOD cloud and end-users. In:
The World Wide Web Conference, pp. 3507–3510 (2019)

 35. Paulheim, H., Bizer, C.: Type Inference on Noisy rdf Data. International Semantic Web Conference, pp.
510–525. Springer, Berlin (2013)

 36. Kellou-Menouer, K., Kedad, Z.: Schema discovery in RDF data sources. In: International Conference
on Conceptual Modeling. Springer, Berlin. pp. 481–495 (2015)

 37. Redaschi, N., Consortium, U., et al.: Uniprot in RDF: Tackling data integration and distributed annota-
tion with the semantic web. Nat. Preced., pp. 1–1 (2009)

 38. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the
web. Technical Report, Stanford InfoLab (1999)

 39. Distributional semantics resources for biomedical text processing: Moen, S.P.F.G.H., Ananiadou, T.S.S.
Proc. LBM 2013, 39–44 (2013)

 40. Gkirtzou, K., Karozos, K., Vassalos, V., Dalamagas, T.: Keywords-to-sparql translation for rdf data
search and exploration. In: International Conference on Theory and Practice of Digital Libraries.
Springer, Berlin, pp. 111–123 (2015)

 41. Bastian, F.B., Roux, J., Niknejad, A., Comte, A., Costa, S., Fonseca, S., De Farias, T.M., Moretti, S.,
Parmentier, G., De Laval, V.R., Rosikiewicz, M., et al.: The Bgee suite: integrated curated expression
atlas and comparative transcriptomics in animals. Nucleic Acids Res. 49, D831–D847 (2021)

http://arxiv.org/abs/1907.09361

440 Distributed and Parallel Databases (2022) 40:409–440

1 3

 42. Altenhoff, A.M., Train, C., Gilbert, K.J., Mediratta, I., de Farias, T.M., Moi, D., Nevers, Y., Radoykova,
H.-S., Rossier, V., Vesztrocy, A.W., et al.: OMA orthology in 2021: website overhaul, conserved iso-
forms, ancestral gene order and more. Nucleic Acids Res. 49, D373–D379 (2021)

 43. Song, D, Schilder, F., Smiley, C., Brew, C., Zielund, T., Bretz, H., Martin, R., Dale, C., Duprey, J.,
Miller, T., et al.: TR discover: a natural language interface for querying and analyzing interlinked data-
sets. In: International Semantic Web Conference. Springer, Berlin, pp. 21–37 (2015)

 44. Sima, A.C., de Farias, T.M., Zbinden, E., Anisimova, M., Gil, M., Stockinger, H., Stockinger, K., Rob-
inson-Rechavi, M., Dessimoz, C.: Enabling semantic queries across federated bioinformatics databases.
Database 2019 (2019)

 45. Nadig, S., Braschler, M., Stockinger, K.: Database Search vs. Information Retrieval: A Novel Method
for Studying Natural Language Querying of Semi-Structured Data. In: International Conference on
Language Resources and Evaluation (LREC) (2020)

 46. Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, I., Yao, Q., Roman, S., et al.:
Spider: a large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-
sql task. arXiv preprint arXiv: 1809. 08887 (2018)

 47. Blunschi, L., Jossen, C., Kossmann, D., Mori, M., Stockinger, K.: Soda: generating sql for business
users. Proc. VLDB Endowm. 5, 932–943 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Ana Claudia Sima1 · Tarcisio Mendes de Farias1,2,3 · Maria Anisimova1,4 ·
Christophe Dessimoz1,2,5,6 · Marc Robinson‑Rechavi1,3 · Erich Zbinden1,4 ·
Kurt Stockinger4

1 SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
2 Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
3 Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
4 ZHAW Zurich University of Applied Sciences, Zurich, Switzerland
5 Department of Genetics, Evolution, and Environment, University College London, London, UK
6 Department of Computer Science, University College London, London, UK

http://arxiv.org/abs/1809.08887

	Bio-SODA UX: enabling natural language question answering over knowledge graphs with user disambiguation
	Abstract
	1 Introduction
	2 Related work
	3 Challenges of natural language processing over knowledge graphs
	4 Bio-SODA: a high-level perspective
	5 Bio-SODA: system architecture
	5.1 Preprocessing phase
	5.2 SPARQL query generation phase

	6 Bio-SODA UX: user dialog interface
	6.1 Design
	6.2 Implementation
	6.3 Use case
	6.3.1 Example 1
	6.3.2 Example 2

	7 Experiments
	7.1 Datasets
	7.2 Queries
	7.3 Results
	7.4 Impact of ranking algorithm
	7.5 Error analysis and remaining problems

	8 Lessons learned
	9 Conclusions and outlook
	Acknowledgements
	References

