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                    Abstract
This paper presents the OPTGAME algorithm developed to iteratively approximate equilibrium solutions of ‘tracking games’, i.e. discrete-time nonzero-sum dynamic games with a finite number of players who face quadratic objective functions. Such a tracking game describes the behavior of decision makers who act upon a nonlinear discrete-time dynamical system, and who aim at minimizing the deviations from individually desirable paths of multiple states over a joint finite planning horizon. Among the noncooperative solution concepts, the OPTGAME algorithm approximates feedback Nash and Stackelberg equilibrium solutions, and the open-loop Nash solution, and the cooperative Pareto-optimal solution.
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                    Notes
	Linear quadratic dynamic games (LQDG) are, for example, a model class that is very well understood and extensively investigated, especially in continuous time (Engwerda 2005). For a recent piece of work applying deterministic, finite-dimensional, zero-sum LQDGs formulated in discrete time, see, e.g. Pachter and Pham (2010).


	The computer program DYNGAME (McKibbin 1987) is, for example, designed to solve rational expectations models and related deterministic dynamic game problems for economic applications, but is not appropriate for approximating solutions for nonlinear problems because the algorithm linearizes the nonlinear dynamic constraint prior to initializing the solution procedure. The LQDG Toolbox (Michalak et al. 2011) exclusively solves linear quadratic (LQ) open-loop deterministic dynamic games (DG) in continuous time and does not provide feedback solutions. Regarding dynamic stochastic games, the Pakes & McGuire computer algorithm (Pakes et al. 1993; Pakes and McGuire 1994, 2001), which calculates Markov-perfect equilibrium solutions, is set up to investigate dynamic industries with heterogenous firms, i.e. the dynamic competition in an oligopolistic industry with investment, entry, and exit (Ericson and Pakes 1995). Here, intensive work is ongoing with respect to both theoretical and computational aspects (see, e.g. Doraszelski and Satterthwaite 2010; Fershtman and Pakes 2012; Farias et al. 2012), with potential future applicability to (macro)economic problems such as those for which OPTGAME was developed.


	It is the number of decision makers involved that distinguishes OPTGAME 2.0 from its predecessor OPTGAME 1.0, which is designed for only two players; see Behrens et al. (2003); Hager et al. (2001). Moreover, the MATLAB implementation of OPTGAME 2.0 offers a wider spectrum of numerical equation solvers than its predecessor.


	Decision makers may also care about what other decision makers do, i.e., it is possible that \(\mathbf {R}_t^{ij}\!\ne \!\mathbf {0}\) for \(j\ne i\). In other words, deviations in the levels of someone else’s control variables from what is desired (seen from one’s own perspective) can be punished in one’s own objective function.


	Particularly in economic models, often one accounts for time preferences and assumes the penalty matrices to be \(\varvec{\Omega }_t^{i}\!:=(\vartheta ^{i})^{t-1}\varvec{\Omega }_0^{i}\)
                      \(\forall t\!\in \!\{1,\ldots ,T\}\), where \(\vartheta ^{i}\!\in \!(0,1)\) is each player \(i\)’s individual discount rate and \(\varvec{\Omega }_0^{i}\!\in \!\mathbb {R}^{m\!\times \!m}\) is \(i\)’s nonnegative definite penalty matrix for the intial time period.


	The assumption of a first-order system of difference equations is not restrictive as higher-order difference equations can always be reduced to systems of first-order difference equations by appropriately redefining variables. Lagged state variables can also be easily removed by introducing additional state variables. In OPTGAME, this is done using the procedure proposed in de Zeeuw and van der Ploeg (1991).


	For \(k\!=\!0\), either zero-vectors may be assigned to \(\{\bar{\mathbf {u}}_t^1\!(k)\}_{t=1}^{T}\), ..., \(\{\bar{\mathbf {u}}_t^{n}\!(k)\}_{t=1}^{T}\) or historical data or other external information may be used.


	Note that we do not linearize the nonlinear system prior to executing the optimization procedure but rather linearize the system repeatedly during the optimization process along the current reference path \(\{\bar{\mathbf {X}}_t\!(k)\}_{t=1}^T\) (for \(k\!=\!1,\ldots ,k_\mathrm{max}\)).


	Again a Gauss-Seidel, a Newton-Raphson, a Levenberg-Marquardt, or a trust region solver is applied for determining the state variable.


	If convergence has not been obtained before \(k\) reaches its maximum value, \(k_\mathrm{max}\), the iterative optimization procedure terminates without succeeding in finding an equilibrium feedback solution. It can then be re-started with an alternative initial tentative control path (to be specified by the user; see Fig. 1).


	Under our assumptions, for the linear time-varying dynamic system approximating the nonlinear system, there always exists a (not necessarily unique) feedback Nash equilibrium solution. For the nonlinear dynamic system, this is not always guaranteed, even if the algorithm converges fairly quickly. In any case, alternative tentative initial control paths can be used to provide more insight into the nature of the solution obtained.


	As by assumption (cf. Sect. 2.1) the leader’s penalty matrix \(\mathbf {R}_t^{11}\) is required to be of full rank, the \(m_1\!\times \!m_1\) matrix \(\overline{\mathbf {C}}_{t}\!(k)\) (see Eq. 24) exists and is invertible.


	Note that the open-loop Nash equilibrium solution of the linearized quadratic game is determined using Pontryagin’s maximum principle, while the feedback Nash and feedback Stackelberg solutions of the linearized quadratic game are approximated using the dynamic programming technique.


	The linear functional form of the optimal control vectors, for \(i=1,\ldots ,n\), results from the quadratic structure of the cost (or payoff) functions (Eq. 1) and the linearity of the system equation (Eq. 5).
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Appendix
Appendix
1.1 Derivation of the Feedback Nash Equilibirum Solution for a LQDG
All players have access to the complete state information and seek control rules that respond to the currently observed state. Here we will describe the corresponding feedback Nash equilibrium solution for iteration step \(k\), \(\{\hat{\mathbf {x}}_t^*\!(k)\}_{t=1}^T\) and \(\{\hat{\mathbf {u}}_t^{i*}\!(k)\}_{t=1}^T\)
                    \(\forall i\!\in \!\{1,\ldots ,n\}\), that minimizes Eq. 1 subject to Eq. 5 by applying the method of dynamic programming. We set up player \(i\)’s (\(i\!=\!1\ldots ,n\)) individual cost-to-go function for the terminal period, \(T\),
$$\begin{aligned} J^{i}_T\!(k)&= \tfrac{1}{2}\!\cdot \! [\hat{\mathbf {x}}_T^*\!(k)-\tilde{\mathbf {x}}_T^{i}]'\,\mathbf {Q}_T^{i}\,[\hat{\mathbf {x}}_T^*\!(k)-\tilde{\mathbf {x}}_T^{i}]\nonumber \\&+\tfrac{1}{2}\!\cdot \!\sum \limits _{j=1}^n [\mathbf {u}_T^j\!(k)-\tilde{\mathbf {u}}_T^{ij}]'\,\mathbf {R}_T^{ij}\,[\mathbf {u}_T^j\!(k)-\tilde{\mathbf {u}}_T^{ij}]. \end{aligned}$$

                    (50)
                

For \(\mathbf {P}_T^{i}\!(k)\!:=\!\mathbf {Q}_T^{i}\) and \(\mathbf {p}_T^{i}\!(k)\!:=\!\mathbf {Q}_T^{i}\tilde{\mathbf {x}}_T^{i}\), Eq. 50 is equivalent to
$$\begin{aligned} J^{i}_T\!(k)\!=\tfrac{1}{2}\!\cdot \!\hat{\mathbf {x}}_T^{*'}\!(k)\mathbf {P}_T^{i}\hat{\mathbf {x}}_T^{*}\!(k)- \hat{\mathbf {x}}_T^{*'}\!(k)\mathbf {p}_T^{i}\!(k)+\xi _T\!(k), \end{aligned}$$

                    (51)
                

where the scalar \(\xi _T\!(k)\) is the sum of all terms that do not depend on \(\hat{\mathbf {x}}_T^{*}\!(k)\) and \(\mathbf {u}_T^{i}\!(k)\) and is, thus, without any relevance for our further calculations. From Eq. 5 we know that the optimal state vector for the terminal period can be derived by the use of the state vector optimized for the previous time period, \(\hat{\mathbf {x}}_{T-1}^{*}\!(k)\), and the optimal control variables, \(\hat{\mathbf {u}}_{T}^{i*}\!(k)\)
                    \(\forall i\!\in \!\{1,\ldots ,n\}\). To derive the latter, in Eq. 51 we replace \(\hat{\mathbf {x}}_T^{*}\!(k)\) by the right-hand side of Eq. 5, and compute the optimal values of \(J^{i*}_T\!(k)\)
                    \(\forall i\!\in \!\{1,\ldots ,n\}\) by minimizing \(J^{i}_T\!(k)\) with respect to \(\mathbf {u}_T^i\!(k)\), i.e.,
$$\begin{aligned} \frac{\partial J^{i}_T\!(k)}{\partial \mathbf {u}_T^i\!(k)}&= \mathbf {B}_T^{i'}\!(k)\mathbf {P}_T^{i}\!(k)\Big [\mathbf {A}_{T}\!(k)\hat{\mathbf {x}}_{T-1}^*\!(k)+\sum \limits _{j=1}^n\mathbf {B}_{T}^{j}\!(k)\hat{\mathbf {u}}_T^{j*}\!(k)+\mathbf {c}_T\!(k)\Big ]\nonumber \\&-\mathbf {B}_T^{i'}\!(k)\mathbf {p}_T^{i}\!(k)+\mathbf {R}_T^{ii}[\hat{\mathbf {u}}_T^{i*}\!(k)-\tilde{\mathbf {u}}_T^{ii}]=\mathbf {0}. \end{aligned}$$

                    (52)
                

Note that, since \(J^{i}_T\!(k)\) is strictly convex with respect to \(\mathbf {u}_T^i\!(k)\)
                    \(\forall i\!\in \!\{1,\ldots ,n\}\), the first-order conditions (Eq. 52) are necessary and sufficient.
Under the assumption that all players act simultaneously, we can derive optimal control variables of the form \(\hat{\mathbf {u}}_{T}^{i*}\!(k)\!=\mathbf {G}_T^{i}\!(k)\hat{\mathbf {x}}_{T-1}^*\!(k)+\mathbf {g}_T^{i}\!(k)\).Footnote 14 Plugging these into Eq. 52 we arrive at Eq. 13 and Eq. 14 for \(t=T\) respectively, from which we can compute the feedback matrices, \(\mathbf {G}_T^{i}\!(k)\) and \(\mathbf {g}_T^{i}\!(k)\). The optimal state can then be determined by \(\hat{\mathbf {x}}_{T}^*\!(k)\!=\mathbf {K}_T\!(k)\hat{\mathbf {x}}_{T-1}^*\!(k)+\mathbf {k}_T\!(k)\) (cf. Eq. 17 for \(t=T\)) with \(\mathbf {K}_T\!(k)\) and \(\mathbf {k}_T\!(k)\) given by Eq. 11 and Eq. 12 for \(t=T\) respectively.
For the derivation of period-\((T\!-\!1)\) parameter matrices of the value function, i.e., the Riccati matrices for time period \(T\!-\!1\), we set up the cost-to-go function \(J^{i*}_T\!(k)+J^{i}_{T-1}\!(k)\) and replace \(\hat{\mathbf {x}}_{T}^*\!(k)\) and \(\hat{\mathbf {u}}_{T}^{i*}\!(k)\) by Eq. 17 and Eq. 18 for \(t=T\!-\!1\) respectively.
$$\begin{aligned} J^{i*}_T\!(k)\!+\!J^{i}_{T-1}\!(k)&= [\mathbf {K}_T\!(k)\hat{\mathbf {x}}_{T-1}^*\!(k)\!+\!\mathbf {k}_T\!(k)]' \left[ \tfrac{1}{2}\!\cdot \!\mathbf {P}_{T}^{i}[\mathbf {K}_T\!(k)\hat{\mathbf {x}}_{T-1}^*\!(k)+\mathbf {k}_T\!(k)]-\mathbf {p}_{T}^{i}\!(k)\right] \\&+\sum \limits _{j=1}^{n}[\mathbf {G}_T^j\!(k)\hat{\mathbf {x}}_{T-1}^*\!(k)+\mathbf {g}_T^j\!(k)]'\mathbf {R}_{T}^{ij}\\&\times \left[ \tfrac{1}{2}\!\cdot \![\mathbf {G}_T^j\!(k)\hat{\mathbf {x}}_{T-1}^*\!(k)+\mathbf {g}_T^j\!(k)]-\tilde{\mathbf {u}}_T^{ij}\right] \\&+\hat{\mathbf {x}}_{T-1}^{*'}\!(k)\mathbf {Q}_{T-1}^{i}\left[ \tfrac{1}{2}\!\cdot \!\hat{\mathbf {x}}_{T-1}^{*}\!(k)-\tilde{\mathbf {x}}_{T-1}^{i}\!(k)\right] \\&+\sum \limits _{j=1}^{n}\mathbf {u}_{T-1}^{j'}\!(k)\mathbf {R}_{T-1}^{ij}\left[ \tfrac{1}{2}\!\cdot \!\mathbf {u}_{T-1}^{j}\!(k)-\tilde{\mathbf {u}}_{T-1}^{ij}\!(k)\right] +\psi _{T-1}\!(k), \end{aligned}$$

where the scalar \(\psi _{T-1}\!(k)\) is without any relevance for further calculations since it is the sum of all terms that do not depend on \(\hat{\mathbf {x}}_{T-1}^{*}\!(k)\) and \(\mathbf {u}_{T-1}^{i}\!(k)\). Collecting all terms containing \(\hat{\mathbf {x}}_{T-1}^{*}\!(k)\) we get
$$\begin{aligned} J^{i*}_T\!(k)+J^{i}_{T-1}\!(k)\!=\tfrac{1}{2}\!\cdot \!\hat{\mathbf {x}}_{T-1}^{*'}\!(k)\mathbf {P}_{T-1}^{i}\hat{\mathbf {x}}_{T-1}^{*}\!(k)- \hat{\mathbf {x}}_{T-1}^{*'}\!(k)\mathbf {p}_{T-1}^{i}\!(k)+\xi _{T-1}\!(k), \end{aligned}$$

                    (53)
                

and can identify the Riccati matrices for \(T\!-\!1\) by comparing coefficients with Eq. 53. The Riccati matrices are then determined by Eq. 9 and Eq. 10 for \(t=T\!-\!1\) respectively. Then, we minimize the objective function of player \(i\) (\(i=1,\ldots ,n\)), i.e.,
$$\begin{aligned} J^{i*}_T\!(k)+J^{i*}_{T-1}\!(k)=\min _{\mathbf {u}_{T-1}^i}\left\{ J^{i*}_T\!(k)+J^{i}_{T-1}\!(k)\right\} , \end{aligned}$$

                    (54)
                

analogously to what was done for period \(T\): In Eq. 53 we replace \(\hat{\mathbf {x}}_{T-1}^{*}\!(k)\) by the linearized system dynamics, \(\mathbf {A}_{T-1}\!(k)\hat{\mathbf {x}}_{T-2}^*\!(k)+\sum \nolimits _{i=1}^n\mathbf {B}_{T-1}^{i}\!(k)\mathbf {u}_{T-1}^{i}\!(k)+\mathbf {c}_{T-1}\!(k)\), compute the expression’s first derivative with respect to \(\mathbf {u}_{T-1}^{i}\!(k)\)
                    \(\forall i\!\in \!\{1,\ldots ,n\}\), and set the derivative equal to zero. A little algebra yields optimal control variables of the form \(\hat{\mathbf {u}}_{T-1}^{i*}\!(k)\!=\mathbf {G}_{T-1}^{i}\!(k)\hat{\mathbf {x}}_{T-2}^*\!(k)+\mathbf {g}_{T-1}^{i}\!(k)\) with \(\mathbf {G}_{T-1}^{i}\!(k)\) and \(\mathbf {g}_{T-1}^{i}\!(k)\) being derived by solving \(2n\) linear matrix equations consisting of Eq. 13 and Eq. 14
                    \(\forall i\!\in \!\{1,\ldots ,n\}\) (for \(t\!=\!T\!-\!1\)) respectively. The optimal state variable for period \(t\!=\!T\!-\!1\) can, then, be determined by \(\hat{\mathbf {x}}_{T-1}^*\!(k)\!=\mathbf {K}_{T-1}\!(k)\hat{\mathbf {x}}_{T-2}^*\!(k)+\mathbf {k}_{T-1}\!(k)\) (cf. Eq. 17 for \(t\!=\!T\!-\!1\)) with \(\mathbf {K}_{T-1}\!(k)\) and \(\mathbf {k}_{T-1}\!(k)\) given by Eq. 11 and Eq. 12 for \(t\!=\!T\!-\!1\) respectively, with the Riccati matrices being determined by Eq. 9 and Eq. 10 (determined again by comparing coefficients).
The procedure sketched for \(t\!=\!T\) and \(t\!=\!T\!-\!1\) can be extended to period \(t\!=\!T\!-\!2\) and generalized to any other period \(t\!=\!\tau (\tau \ge 1)\) by induction. The existence of uniquely determined Riccati matrices for all periods \(t\!\in \!\{1,\ldots ,T\}\) of the LQDG, i.e., each player \(i\) seeking to minimize Eq. 1 subject to Eq. 5, can readily be verified according to, e.g. Basar and Olsder (1999), if the penalty matrices for the states are nonnegative definite (which is what we assumed).
To conclude, the LQDG at iteration step \(k\) is solved by starting with the terminal conditions \(\mathbf {P}_{iT}\!(k)\) and \(\mathbf {p}_{iT}\!(k)\), and integrating the Riccati equations (Eqs. 9 and 10) backward in time. Utilizing both Riccati matrices, \(\mathbf {P}_t^{i}\!(k)\) and \(\mathbf {p}_t^{i}\!(k)\), and feedback matrices, \(\mathbf {G}_t^{i}\!(k)\) and \(\mathbf {g}_t^{i}\!(k)\), computed for all players and for all time periods, i.e., \(\forall i\!\in \!\{1,\ldots ,n\}\) and \(\forall t\!\in \!\{1,\ldots ,T\}\), the \(k\)th iteration of the feedback Nash equilibrium path for the state variable, \(\{\hat{\mathbf {x}}_t^*\!(k)\}_{t=1}^T\), and the \(k\)th iteration of player \(i\)’s equilibrium path for their own control variable, \(\{\hat{\mathbf {u}}_t^{i*}\!(k)\}_{t=1}^T\), are determined by Eq. 17 and Eq. 18 respectively, both being initiated with \(\hat{\mathbf {x}}_{0}^*\!(k)\!=\!\bar{\mathbf {x}}_{0}\) (where \(\mathbf {K}_t\!(k)\) and \(\mathbf {k}_t\!(k)\) are defined by Eq. 11 and Eq. 12 respectively).
Given the values of optimal states and controls, the scalar values of the loss functions can be determined.
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