Skip to main content
Log in

Improved filtering for weighted circuit constraints

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

We study the weighted circuit constraint in the context of constraint programming. It appears as a substructure in many practical applications, particularly routing problems. We propose a domain filtering algorithm for the weighted circuit constraint that is based on the 1-tree relaxation of Held and Karp. In addition, we study domain filtering based on an additive bounding procedure that combines the 1-tree relaxation with the assignment problem relaxation. Experimental results on Traveling Salesman Problem instances demonstrate that our filtering algorithms can dramatically reduce the problem size. In particular, the search tree size and solving time can be reduced by several orders of magnitude, compared to existing constraint programming approaches. Moreover, for medium-size problem instances, our method is competitive with the state-of-the-art special-purpose TSP solver Concorde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Althaus, E., Bockmayr, A., Elf, M., Jünger, M., Kasper, T., & Mehlhorn, K. (2002). SCIL—Symbolic constraints in integer linear programming. In Proceedings of the 10th annual European symposium on algorithms (ESA). Lecture notes in computer science (Vol. 2461, pp. 75–87). Berlin: Springer.

    Google Scholar 

  2. Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2006). The traveling salesman problem: A computational study. Princeton: Princeton University Press.

    MATH  Google Scholar 

  3. Azevedo, F. (2007). Cardinal: A finite sets constraint solver. Constraints, 12, 93–129.

    Article  MathSciNet  MATH  Google Scholar 

  4. Beldiceanu, N., & Contejean, E. (1994). Introducing global constraints in CHIP. Mathematical and Computer Modelling, 20(12), 97–123.

    Article  MATH  Google Scholar 

  5. Beldiceanu, N., Flener, P., & Lorca, X. (2005). The tree constraint. In Proceedings of the fourth international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR). Lecture notes in computer science (Vol. 3524, pp. 64–78). Berlin: Springer.

    Chapter  Google Scholar 

  6. Bessiere, C. (2006). Constraint propagation. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (Chapter 3). Amsterdam: Elsevier.

    Google Scholar 

  7. Carpaneto, G., Dell’Amico, M., & Toth, P. (1995). Exact solution of large-scale, asymmetric traveling salesman problems. ACM Transactions on Mathematical Software, 21(4), 394–409.

    Article  MathSciNet  MATH  Google Scholar 

  8. Carpaneto, G., Martello, S., & Toth, P. (1988). Algorithms and codes for the assignment problem. Annals of Operations Research, 13(1), 191–223.

    Article  MathSciNet  Google Scholar 

  9. Caseau, Y., & Laburthe, F. (1997). Solving small TSPs with constraints. In Proceedings of the 14th international conference on logic programming (ICLP) (pp. 316–330). Cambridge: MIT Press.

    Google Scholar 

  10. Chazelle, B. (2000). A minimum spanning tree algorithm with inverse-Ackermann type complexity. Journal of the ACM, 47(6), 1028–1047.

    Article  MathSciNet  MATH  Google Scholar 

  11. Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to algorithms. Cambridge: MIT Press.

    MATH  Google Scholar 

  12. Dixon, B., Rauch, M., & Tarjan, R. (1992). Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM Journal on Computing, 21(6), 1184–1192.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dooms, G., & Katriel, I. (2006). The minimum spanning tree constraint. In Proceedings of CP. LNCS (Vol. 4204, pp. 152–166). Berlin: Springer.

    Google Scholar 

  14. Dooms, G., & Katriel, I. (2007). The “not-too-heavy spanning tree” constraint. In Proceedings of the fourth international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR). Lecture notes in computer science (Vol. 4510, pp. 59–70). Berlin: Springer.

    Chapter  Google Scholar 

  15. Fages, J.-G., & Lorca, X. (2011). Revisiting the tree constraint. In Proceedings of the 17th international conference on the principles and practice of constraint programming (CP). LNCS (Vol. 6876, pp. 271–285). Berlin: Springer.

    Google Scholar 

  16. Fischetti, M., & Toth, P. (1989). An additive bounding procedure for combinatorial optimization problems. Operations Research, 37(2), 319–328.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fischetti, M., & Toth, P. (1992). An additive bounding procedure for the asymmetric travelling salesman problem. Mathematical Programming, 53(1), 173–197.

    Article  MathSciNet  MATH  Google Scholar 

  18. Focacci, F. (2001). Solving combinatorial optimization problems in constraint programming. Ph.D. thesis, University of Ferrara.

  19. Focacci, F., Lodi, A., & Milano, M. (1999). Cost-based domain filtering. In Proceedings of the fifth international conference on principles and practice of constraint programming (CP). Lecture notes in computer science (Vol. 1713, pp. 189–203).

  20. Focacci, F., Lodi, A., & Milano, M. (2002). Embedding relaxations in global constraints for solving TSP and TSPTW. Annals of Mathematics and Artificial Intelligence, 34(4), 291–311.

    Article  MathSciNet  MATH  Google Scholar 

  21. Focacci, F., Lodi, A., & Milano, M. (2002). A hybrid exact algorithm for the TSPTW. INFORMS Journal on Computing, 14(4), 403–417.

    Article  MathSciNet  MATH  Google Scholar 

  22. Focacci, F., Lodi, A., Milano, M., & Vigo, D. (1999). Solving TSP through the integration of OR and CP techniques. Electronic Notes in Discrete Mathematics, 1, 13–25.

    Article  MathSciNet  Google Scholar 

  23. Genç Kaya, L., & Hooker, J. N. (2006). A filter for the circuit constraint. In Proceedings of the 12th international conference on principles and practice of constraint programming (CP). Lecture notes in computer science (Vol. 4204, pp. 706–710). Berlin: Springer.

    Google Scholar 

  24. Gervet, C. (1993). New structures of symbolic constraint objects: Sets and graphs. In Third workshop on constraint logic programming (WCLP’2003).

  25. Gervet, C. (2006). Constraints over structured domains. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (Chapter 17). Amsterdam: Elsevier.

    Google Scholar 

  26. Grötschel, M., & Holland, O. (1991). Solution of large-scale symmetric travelling salesman problems. Mathematical Programming, 51, 141–202.

    Article  MathSciNet  MATH  Google Scholar 

  27. Gutin, G., & Punnen, A. P. (Eds.) (2007). The traveling salesman problem and its variations. Berlin: Springer.

    MATH  Google Scholar 

  28. Held, M., & Karp, R. M. (1970). The traveling-salesman problem and minimum spanning trees. Operations Research, 18, 1138–1162.

    Article  MathSciNet  MATH  Google Scholar 

  29. Held, M., & Karp, R. M. (1971). The traveling-salesman problem and minimum spanning trees: Part II. Mathematical Programming, 1, 6–25.

    Article  MathSciNet  MATH  Google Scholar 

  30. Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1), 106–130.

    Article  MathSciNet  MATH  Google Scholar 

  31. Helsgaun, K. (2009). General k-opt submoves for the Lin-Kernighan TSP heuristic. Mathematical Programming Computation, 1(2), 119–163.

    Article  MathSciNet  MATH  Google Scholar 

  32. IBM Corp. (2010). IBM ILOG CP V1.6 User Manual.

  33. IBM Corp. (2010). IBM ILOG OPL V12.2 User Manual.

  34. Jonker, R., & Volgenant, T. (1983). Transforming asymmetric into symmetric traveling salesman problems. Operations Research Letters, 2(4), 161–163.

    Article  MATH  Google Scholar 

  35. Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller, & J. W. Thatcher (Eds.), Complexity of computer animations (pp. 85–103). London: Plenum Press.

    Google Scholar 

  36. Kilby, P., & Shaw, P. (2006). Vehicle routing. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (Chapter 23). Amsterdam: Elsevier.

    Google Scholar 

  37. Kuhn, H. W. (1955). The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 2, 83–97.

    Article  MathSciNet  Google Scholar 

  38. Lauriere, J.-L. (1978). A language and a program for stating and solving combinatorial problems. Artificial Intelligence, 10(1), 29–127.

    Article  MathSciNet  MATH  Google Scholar 

  39. Lodi, A., Milano, M., & Rousseau, L.-M. (2006). Discrepancy-based additive bounding procedures. INFORMS Journal on Computing, 18(4), 480–493.

    Article  MathSciNet  Google Scholar 

  40. Milano, M., & van Hoeve, W. J. (2002). Reduced cost-based ranking for generating promising subproblems. In Proceedings of the eighth international conference on principles and practice of constraint programming (CP). Lecture notes in computer science (Vol. 2470, pp. 1–16). Berlin: Springer.

    Google Scholar 

  41. Pesant, G., Gendreau, M., Potvin, J. Y., & Rousseau, J. M. (1998). An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transportation Science, 32(1), 12–29.

    Article  MATH  Google Scholar 

  42. Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Techical Journal, 36, 1389–1401.

    Google Scholar 

  43. Puget, J. F. (1992). PECOS: A high level constraint programming language. In Proceedings of the Singapore international conference on intelligent systems (SPICIS).

  44. Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings of the twelfth national conference on artificial intelligence (AAAI) (Vol. 1, pp. 362–367). Menlo Park: AAAI Press.

    Google Scholar 

  45. Régin, J.-C. (2008). Simpler and incremental consistency checking and arc consistency filtering algorithms for the weighted spanning tree constraint. In Proceedings of the fifth international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR). Lecture notes in computer science (Vol. 5015, pp. 233–247). Berlin: Springer.

    Chapter  Google Scholar 

  46. Régin, J.-C. (2011). Global constraints: A survey. In P. Van Hentenryck, & M. Milano (Eds.), Hybrid optimization (pp. 63–134). Berlin: Springer.

    Chapter  Google Scholar 

  47. Régin, J.-C., Rousseau, L.-M., Rueher, M., & van Hoeve, W.-J. (2010). The weighted spanning tree constraint revisited. In Proceedings of the seventh international conference on integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR). LNCS (Vol. 6140, pp. 176–180. Berlin: Springer.

    Google Scholar 

  48. Sellmann, M. (2004). Theoretical foundations of CP-based Lagrangian relaxation. In Proceedings of the 10th international conference on the principles and practice of constraint programming (CP). LNCS (Vol. 3258, pp. 634–647). Berlin: Springer.

    Google Scholar 

  49. Tarjan, R. (1982). Sensitivity analysis of minimum spanning trees and shortest path trees. Information Processing Letters, 14(1), 30–33.

    Article  MathSciNet  Google Scholar 

  50. Tarjan, R. E. (1979). Applications of path compression on balanced trees. Journal of the ACM, 26(4), 690–715.

    Article  MathSciNet  MATH  Google Scholar 

  51. van Hoeve, W.-J., & Katriel, I. (2006). Global constraints. In F. Rossi, P. van Beek, & T. Walsh (Eds.), Handbook of constraint programming (Chapter 6). Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem-Jan van Hoeve.

Additional information

The work of P. Benchimol was performed while being at CIRRELT, École Polytechnique de Montréal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benchimol, P., Hoeve, WJ.v., Régin, JC. et al. Improved filtering for weighted circuit constraints. Constraints 17, 205–233 (2012). https://doi.org/10.1007/s10601-012-9119-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-012-9119-x

Keywords

Navigation