Skip to main content
Log in

Are invasive marsh frogs (Pelophylax ridibundus) replacing the native P. lessonae/P. esculentus hybridogenetic complex in Western Europe? Genetic evidence from a field study

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The water-frog L–E system, widespread in Western Europe, comprises the pool frog Pelophylax lessonae and the hybridogenetic edible frog P. esculentus, which originated from hybridization between pool frogs and marsh frogs (P. ridibundus). In P. esculentus, the lessonae (L) genome is eliminated during meiosis and has to be gained anew each generation from a P. lessonae partner, while the ridibundus (R′) genome is transmitted clonally. It therefore accumulates deleterious mutations, so that R′R′ offspring from P. esculentus×P. esculentus crosses are normally unviable. This system is now threatened by invasive P. ridibundus (RR) imported from Eastern Europe and the Balkans. We investigated the genetic interactions between invasive marsh frogs and native water frogs in a Swiss wetland area, and used genetic data collected in the field to validate several components of a recently postulated mechanism of species replacement. We identified neo-ridibundus individuals derived from crosses between invasive ridibundus and native esculentus, as well as newly arisen hybridogenetic esculentus lineages stemming from crosses between invasive ridibundus (RR) and native lessonae (LL). As their ridibundus genomes are likely to carry less deleterious mutations, such lineages are expected to produce viable ridibundus offspring, contributing to species replacement. However, such crosses with invasive ridibundus only occurred at a limited scale; moreover, RR×LL crosses did not induce any introgression from the ridibundus to the lessonae genome. We did not find any ridibundus stemming from crosses between ancient esculentus lineages. Despite several decades of presence on the site, introduced ridibundus individuals only represent 15 % of sampled frogs, and their spatial distribution seems shaped by specific ecological requirements rather than history of colonization. We therefore expect the three taxa to coexist stably in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arioli M (2007) Reproductive patterns and population genetics in pure hybridogenetic water frog populations of Rana esculenta. PhD thesis. (http://www.dissertationen.uzh.ch), University of Zurich

  • Berger L (1970) Some characteristics of the crosses within Rana esculenta complex in postlarval development. Ann Zool 27:373–416

    Google Scholar 

  • Berger L, Uzzell T, Hotz H (1988) Sex determination and sex ratios in western Palearctic water frogs: XX and XY female hybrids in the Pannonian Basin? Proc Acad Natl Sci Phila 140:220–239

    Google Scholar 

  • Berthoud G, Perret-Gentil C (1976) Les lieux humides et les batraciens du canton de Vaud. Mém Soc vaud Sci Nat 16:1–39

    Google Scholar 

  • Broquet T, Berset-Braendli L, Emaresi G, Fumagalli L (2007) Buccal swabs allow efficient and reliable microsatellite genotyping in amphibians. Conserv Genet 8:509–511

    Article  CAS  Google Scholar 

  • Christiansen DG (2009) Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus). BMC Evol Biol 9:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Christiansen DG, Reyer H-U (2009) From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution 63:1754–1768

    Article  CAS  PubMed  Google Scholar 

  • Earl Dent A, VonHoldt Bridgett M (2012) STRUCTURE HARVESTER: a website and program for visualizing SRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Garner TWJ, Gautschi B, Rothlisberger S, Reyer H-U (2000) A set of CA repeat microsatellite markers derived from the pool frog, Rana lessonae. Mol Ecol 9:2173–2175

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2005) PCAGEN. http://www2.unil.ch/popgen/softwares/pcagen.htm. Accessed 7 Nov 2012

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  • Graf J-D, Polls Pelaz M (1989) Evolutionary genetics of the Rana esculenta complex. In: Dawley RM, Bogart JP (eds) Evolution and ecology of unisexual vertebrates. Bulletin 466, New York State Museum, pp 289–302

  • Guex GD, Hotz H, Semlitsch RD (2002) Deleterious alleles and differential viability in progeny of natural hemiclonal frogs. Evolution 56:1036–1044

    Article  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Higgins D, Thompson J, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  PubMed  Google Scholar 

  • Holenweg Peter A-K, Reyer H-U, Abt Tietje G (2002) Species and sex ratio differences in mixed populations of hybridogenetic water frogs: the influence of pond features. Ecoscience 9:1–11

    Google Scholar 

  • Holsbeek G, Jooris R (2009) Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex). Biol Invasions 12:1–13

    Article  Google Scholar 

  • Hotz H, Mancino G, Bucci-Innocenti S, Ragghianti M, Berger L, Uzzell T (1985) Rana ridibunda varies geographically in inducing clonal gametogenesis in interspecies hybrids. J Exp Zool 236:199–210

    Article  Google Scholar 

  • Hotz H, Beerli P, Spolsky C (1992) Mitochondrial-DNA reveals formation of nonhybrid frogs by natural matings between hemiclonal hybrids. Mol Biol Evol 9:610–620

    CAS  PubMed  Google Scholar 

  • Hotz H, Uzzell T, Guex G et al (2001) Microsatellites: a tool for evolutionary genetic studies of western Palearctic water frogs. Mitt Mus Nat kd Berl Zool 77:43–50

    Google Scholar 

  • Huxel GR (1999) Rapid displacement of native species by invasive species: effects of hybridization. Biol Conserv 89:143–152

    Article  Google Scholar 

  • Kuzmin S, Tarkhnishvili D, Ishchenko, Vladimir Dujsebayeva T, et al (2009) Pelophylax ridibundus IUCN red list of threatened species. http://www.iucnredlist.org/. Accessed 6 Jan 2013

  • Lengagne T, Grolet O, Joly P (2006) Male mating speed promote hybridization in the Rana lessonaeRana esculenta waterfrog system. Behav Ecol Sociobiol 60:123–130

    Article  Google Scholar 

  • Luquet E, Vorburger C, Hervant F et al (2011) Invasiveness of an introduced species: the role of hybridization and ecological constraints. Biol Invasions 13:1901–1915

    Article  Google Scholar 

  • Manchester SJ, Bullock JM (2000) The impacts of non-native species on UK biodiversity and the effectiveness of control. J Appl Ecol 37:845–864

    Article  Google Scholar 

  • Marchesi P, Fournier J, Rey A (1999) Etat des populations de “grenouilles vertes” Rana lessonae, Rana kl. esculenta du Bois de Finges (Salquenen, VS). Bull Murithienne 117:13–22

    Google Scholar 

  • Meyer A, Zumbach S, Schmidt B, Monney J-C (2009) Amphibiens et reptiles de Suisse, Haupt Verlag, Bern, 336 pp

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Negovetic S, Anholt BR, Semlitsch RD, Reyer HU (2001) Specific responses of sexual and hybridogenetic European waterfrog tadpoles to temperature. Ecology 82:766–774

    Article  Google Scholar 

  • Nöllert A, Nöllert C (2003) Guide des amphibiens d’Europe, Delachaux & Niestlé, 383 pp

  • Nylander J (2004) MrAIC. pl. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Petranka JW, Harp EM, Holbrook CT, Hamel JA (2007) Long-term persistence of amphibian populations in a restored wetlands complex. Biol Cons 138:371–380

    Article  Google Scholar 

  • Plénet S, Hervant F, Joly P (2001) Ecology of the hybridogenetic Rana esculenta complex: differential oxygen requirements of tadpoles. Evol Ecol 14:13–23

    Article  Google Scholar 

  • Plénet S, Joly P, Hervant F et al (2005) Are hybridogenetic complexes structured by habitat in water frogs? J Evol Biol 18:1575–1586

    Article  PubMed  Google Scholar 

  • Plötner J, Uzzell T, Beerli P, Spolsky C, Ohst T, Litvinchuk SN, Guex G-D, Reyer H-U, Hotz H (2008) Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. J Evol Biol 21:668–681

    Article  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • R Core Team (2012) R: A Language and Environment for Statistical Computing

  • Rannap R, Lõhmus A, Briggs L (2009) Restoring ponds for amphibians: a success story. Hydrobiologia 634:87–95

    Article  Google Scholar 

  • Rhymer M, Simberloff D (1996) Extinction by hybridization and introgression. Ann Rev Ecol Evol Syst 27:83–109

    Article  Google Scholar 

  • Schmeller DS, Seitz A, Crivelli A, Veith M (2005) Crossing species’ range borders: interspecies gene exchange mediated by hybridogenesis. Proc R Soc Biol Sci Ser B 272:1625–1631

    Article  CAS  Google Scholar 

  • Schmeller DS, Pagano A, Plénet S, Veith M (2007) Introducing water frogs—is there a risk for indigenous species in France? C R Biol 330:684–690

    Google Scholar 

  • Schmidt BR (1993) Are hybridogenetic frogs cyclical parthenogens? Trends Ecol Evol 8:271–273

    Article  CAS  PubMed  Google Scholar 

  • Spolsky C, Uzzell T (1984) Natural interspecies transfer of mitochondrial DNA in amphibians. Proc Natl Acad Sci USA 81:5802–5805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spolsky C, Uzzell T (1986) Evolutionary History of the hybridogenetic hybrid frog Rana esculenta as deduced from mtDNA Analyses. Mol Biol Evol 3:44–56

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tunner HG, Heppich S (1981) Premeiotic genome exclusion during oogenesis in the common edible frog, Rana esculenta. Naturwissenschaften 68:207–208

    Article  CAS  PubMed  Google Scholar 

  • Uzzell T, Berger L (1975) Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. Proc Acad Nat Sci Phila 127:13–24

    Google Scholar 

  • Vorburger C (2001a) Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs. Evolution 55:2319–2332

    Article  CAS  PubMed  Google Scholar 

  • Vorburger C (2001b) Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes. Ecol Lett 4:628–636

    Article  Google Scholar 

  • Vorburger C, Reyer H (2003) A genetic mechanism of species replacement in European waterfrogs ? Conserv Genet 4:141–155

    Article  CAS  Google Scholar 

  • Vorburger C, Ribi G (1999) Aggression and competition for shelter between a native and an introduced crayfish in Europe. Freshw Biol 42:111–119

    Article  Google Scholar 

  • Westphal MI, Browne M, MacKinnon K, Noble I (2008) The link between international trade and the global distribution of invasive alien species. Biol Invasions 10:391–398

    Article  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J et al (1998) Quantifying threats to imperiled species in the United States. BioSciences 48:607–615

    Article  Google Scholar 

  • Williamson M, Fitter A (1966) The varying success of invaders. Ecology 77:1661–1666

    Article  Google Scholar 

  • Zeisset I, Rowe G, Beebee TJC (2000) Polymerase chain reaction primers for microsatellite loci in the north European water frogs Rana ridibunda and R. lessonae. Mol Ecol 9:1173–1174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. Antoniazza and A. Ghiraldi for sharing their knowledge of the Grande Cariçaie; C. Benjemia, S. Biollay, O. Darbellay, L. Dutoit, F. Goetschi, N. Hazi, A. Jost, H. Lovis, T. Martignier, L. Megali, G. Mottaz, A. Murakozy, M. Podolak, E. Rapin, M. Ribaux, N. Rodrigues, P. Roelli, A. Rogivue, M. Stojiljkovic and Q. Theiler for their help during field work; S. Röthlisberger and N. Pruvost from Uli Reyer’s lab in Zürich for sharing their experience with Pelophylax microsatellites; C. Aletti, C. Berney, C. Dufresnes, R. Savary and R. Sermier for their help in the lab; S. Dubey for his help in phylogenetic analyses; C. Betto-Colliard for discussions. We acknowledge financial support from the Association de la Grande Cariçaie, the School of Biology (University of Lausanne) and the Swiss National Science Foundation (Grant 31003A_129894 to NP). The samples were collected with the authorisation of the veterinary and nature offices of the Canton de Vaud (N°2012-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Perrin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 93 kb)

10592_2014_585_MOESM2_ESM.docx

Distribution of Pelophylax species among the five sampling sites. Color legend to pie charts: dark blue RR ridibundus, pale blue neo-ridibundus (3_EN_13), dark green ancient R′L esculentus, pale green neo R′L esculentus, red LL lessonae (DOCX 2677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuenberger, J., Gander, A., Schmidt, B.R. et al. Are invasive marsh frogs (Pelophylax ridibundus) replacing the native P. lessonae/P. esculentus hybridogenetic complex in Western Europe? Genetic evidence from a field study. Conserv Genet 15, 869–878 (2014). https://doi.org/10.1007/s10592-014-0585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0585-0

Keywords

Navigation