Skip to main content

Advertisement

Log in

Pronounced differences in genetic structure despite overall ecological similarity for two Ambystoma salamanders in the same landscape

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Studies linking genetic structure in amphibian species with ecological characteristics have focused on large differences in dispersal capabilities. Here, we test whether two species with similar dispersal potential but subtle differences in other ecological characteristics also exhibit strong differences in genetic structure in the same landscape. We examined eight microsatellites in marbled salamanders (Ambystoma opacum) from 29 seasonal ponds and spotted salamanders (Ambystoma maculatum) from 19 seasonal ponds in a single geographic region in west-central Massachusetts. Despite overall similarity in ecological characteristics of spotted and marbled salamanders, we observed clear differences in the genetic structure of these two species. For marbled salamanders, we observed strong overall genetic differentiation (F ST = 0.091, F′ ST = 0.375), three population-level clusters of populations (K = 3), a strong pattern of isolation by distance (r = 0.58), and marked variation in family-level structure (from 1 to 23 full-sibling families per site). For spotted salamanders, overall genetic differentiation was weaker (F ST = 0.025, F′ ST = 0.102), there was no evidence of population-level clustering (K = 1), the pattern of isolation by distance (r = 0.17) was much weaker compared to marbled salamanders, and there was less variation in family-level structure (from 10 to 36 full-sibling families per site). We suspect that a combination of breeding site fidelity, effective population size, and generation interval is responsible for these marked differences. Our results suggest that marbled salamanders, compared to spotted salamanders, are more sensitive to fragmentation from various land-use activities and would be less likely to recolonize extirpated sites on an ecologically and conservation-relevant time frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allendorf FW, Phelps SR (1981) Use of allelic frequencies to describe population structure. Can J Fish Aquat Sci 38:1507–1514

    Article  Google Scholar 

  • Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program structure. Mol Ecol Resour 8:1219–1229. doi:10.1111/j.1755-0998.2008.02355.x

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Google Scholar 

  • Bishop SC (1941) The salamanders of New York. New York State Museum, New York

    Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Bodmer WF (1971) The genetics of human populations. W. H. Freeman, San Francisco

    Google Scholar 

  • Christie MR, Marine ML, French RA, Waples RS, Blouin MS (2012) Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109:254–260. doi:10.1038/hdy.2012.39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cook RP (1978) Effects of acid precipitation on embryonic mortality of spotted salamanders (Ambystoma maculatum) and Jefferson salamanders (Ambystoma jeffersonianum) in the Connecticut Valley of Massachusetts. Department of Forestry and Wildlife Management, University of Massachusetts, Amherst

    Google Scholar 

  • Croshaw DA, Schable NA, Peters MB, Glenn TC (2005) Isolation and characterization of microsatellite DNA loci from Ambystoma salamanders. Conserv Genet 6:473–479

    Article  Google Scholar 

  • Dawson MN, Louie KD, Barlow M, Jacobs DK, Swift CC (2002) Comparative phylogeography of sympatric sister species, Clevelandia ios and Eucyclogobius newberryi (Teleostei, Gobiidae), across the California Transition Zone. Mol Ecol 11:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Delaney KS, Riley SPD, Fisher RN (2010) A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5. doi:10.1371/journal.pone.0012767

  • Egan RS, Paton PWC (2004) Within-pond parameters affecting oviposition by wood frogs and spotted salamanders. Wetlands 24:1–13

    Article  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351

    Article  PubMed  Google Scholar 

  • Flageole S, Leclair R (1992) Demography of a salamander (Ambystoma maculatum) population studied by skeletochronology. Can J Zool 70:740–749. doi:10.1139/z92-108

    Article  Google Scholar 

  • Foster DR (1992) Land-use history (1730–1990) and vegetation dynamics in Central New England, USA. J Ecol 80:753–771

    Article  Google Scholar 

  • Gamble LR, McGarigal K, Compton BW (2007) Fidelity and dispersal in the pond-breeding amphibian, Ambystoma opacum: implications for spatio-temporal population dynamics and conservation. Biol Conserv 139:247–257. doi:10.1016/j.biocon.2007.07.001

    Article  Google Scholar 

  • Gamble LR, McGarigal K, Sigourney DB, Timm BC (2009) Survival and breeding frequency in marbled salamanders (Ambystoma opacum): implications for spatio-temporal population dynamics. Copeia 394–407. doi:10.1643/ch-07-241

  • Goldberg CS, Waits LP (2010) Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol 19:3650–3663. doi:10.1111/j.1365-294X.2010.04673.x

    Article  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT version 2.9.3, A program to estimate and test gene diversities and fixation indices. Updated from Goudet (1995). http://www2.unil.ch/popgen/softwares/fstat.htm

  • Greenwald KR, Gibbs HL, Waite TA (2009) Efficacy of land-cover models in predicting isolation of marbled salamander populations in a fragmented landscape. Conserv Biol 23:1232–1241. doi:10.1111/j.1523-1739.2009.01204.x

    Article  PubMed  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    Article  CAS  PubMed  Google Scholar 

  • Husting EL (1965) Survival and breeding structure in a population of Ambystoma maculatum. Copeia 1965:352–362

    Article  Google Scholar 

  • Jackson SD (1990) Demography, migratory patterns and effects of pond chemistry on two syntopic mole salamanders, Ambystoma jeffersonianum and A. maculatum. Department of Forestry and Wildlife Management, University of Massachusetts, Amherst

    Google Scholar 

  • Julian SE, King TL, Savage WK (2003a) Isolation and characterization of novel tetranucleotide microsatellite DNA markers for the spotted salamander, Ambystoma maculatum. Mol Ecol Notes 3:7–9

    Article  CAS  Google Scholar 

  • Julian SE, King TL, Savage WK (2003b) Novel Jefferson salamander, Ambystoma jeffersonianum, microsatellite DNA markers detect population structure and hybrid complexes. Mol Ecol Notes 3:95–97

    Article  CAS  Google Scholar 

  • Kaplan RH, Crump ML (1978) The non-cost of brooding in Ambystoma opacum. Copeia 1978:99–103

    Article  Google Scholar 

  • King RB, Lawson R (2001) Patterns of population subdivision and gene flow in three sympatric natricine snakes. Copeia 2001:602–614

    Article  Google Scholar 

  • Lai KJ, Gomes CP, Schwartz MK, McKelvey KS, Calkin DE, Montgomery CA (2011) The Steiner multigraph problem: wildlife corridor design for multiple species. In: Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI-11). AAAI Press, San Franciso

  • Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856

    Article  Google Scholar 

  • Madison DM (1997) The emigration of radio-implanted spotted salamanders, Ambystoma maculatum. J Herpetol 31:542–551. doi:10.2307/1565607

    Google Scholar 

  • McDonald DB, Potts WK, Fitzpatrick JW, Woolfenden GE (1999) Contrasting genetic structures in sister species of North American scrub-jays. Proc R Soc Lond B 266:1117–1125

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: F-ST and related measures. Mol Ecol Resour 11:5–18. doi:10.1111/j.1755-0998.2010.02927.x

    Article  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi:10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  • Montieth KE, Paton PWC (2006) Emigration behavior of spotted salamanders on golf courses in southern Rhode Island. J Herpetol 40:195–205. doi:10.1670/130-04a.1

    Google Scholar 

  • Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B (2004) Species evenness and productivity in experimental plant communities. Oikos 107:50–63. doi:10.1111/j.0030-1299.2004.13110.x

    Article  Google Scholar 

  • Mullen LB, Woods AH, Schwartz MK, Sepulveda AJ, Lowe WH (2010) Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks. Mol Ecol 19

  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787. doi:10.1007/s10592-005-9056-y

    Article  CAS  Google Scholar 

  • Neel MC, McKelvey K, Ryman N, Lloyd MW, Bull RS, Allendorf FW, Schwartz MK, Waples RS (2013) Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity 111:189–199. doi:10.1038/hdy.2013.37

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Nicholson E, Possingham HP (2006) Objectives for multiple-species conservation planning. Conserv Biol 20:871–881. doi:10.1111/j.1523-1739.2006.00369.x

    Article  PubMed  Google Scholar 

  • Noble GK, Brady MK (1933) Observations on the life history of the marbled salamander, Ambystoma opacum Gravenhorst. Zoologica 11:89–132

    Google Scholar 

  • Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47:1329–1341

    Article  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution, Washington DC

    Google Scholar 

  • Petranka JW, Smith CK, Scott AF (2004) Identifying the minimal demographic unit for monitoring pond-breeding amphibians. Ecol Appl 14:1065–1078. doi:10.1890/02-5394

    Article  Google Scholar 

  • Plunkett EB (2009) Conservation implications of a marbled salamander, Ambystoma opacum, metapopulation model. Masters Thesis, Department of Environmental Conservation, University of Massachusetts Amherst

  • Pritchard K, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purrenhage JL, Niewiarowski PH, Moore FBG (2009) Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol Ecol 18:235–247. doi:10.1111/j.1365-294X.2008.04024.x

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Richardson JL (2012) Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol Ecol 21:4437–4451. doi:10.1111/j.1365-294X.2012.05708.x

    Article  PubMed  Google Scholar 

  • Rodriguez-Ramilo ST, Wang J (2012) The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Mol Ecol Resour. doi:10.1111/j.1755-0998.2012.03156.x Online early

    PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  • Ryman N, Palm S, Andre C, Carvalho GR, Dahlgren TG, Jorde PE, Laikre L, Larsson LC, Palme A, Ruzzante DE (2006) Power for detecting genetic divergence: differences between statistical methods and marker loci. Mol Ecol 15:2031–2045. doi:10.1111/j.1365-294X.2006.02839.x

    Google Scholar 

  • Schwenk WS, Donovan TM (2011) A multispecies framework for landscape conservation planning. Conserv Biol 25:1010–1021. doi:10.1111/j.1523-1739.2011.01723.x

    Article  PubMed  Google Scholar 

  • Shoop CR (1968) Migratory orientation of Ambystoma maculatum: movements near breeding ponds and displacements of migrating individuals. Biol Bull 135:230. doi:10.2307/1539630

    Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Sotiropoulos K, Eleftherakos K, Tsaparis D, Kasapidis P, Giokas S, Legakis A, Kotoulas G (2013) Fine scale spatial genetic structure of two syntopic newts across a network of ponds: implications for conservation. Conserv Genet 14:385–400. doi:10.1007/s10592-013-0452-4

    Article  Google Scholar 

  • Steele CA, Baumsteiger J, Storfer A (2009) Influence of life-history variation on the genetic structure of two sympatric salamander taxa. Mol Ecol 18:1629–1639. doi:10.1111/j.1365-294X.2009.04135.x

    Article  CAS  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi:10.1126/science.1103538

    Article  CAS  PubMed  Google Scholar 

  • Tallmon DA, Gregovich D, Waples RS, Baker CS, Jackson J, Taylor BL, Archer E, Martien KK, Allendorf FW, Schwartz MK (2010) When are genetic methods useful for estimating contemporary abundance and detecting population trends? Mol Ecol Resour 10:684–692. doi:10.1111/j.1755-0998.2010.02831.x

    Article  PubMed  Google Scholar 

  • Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98:185–207

    Article  Google Scholar 

  • Timm BC, McGarigal K, Gamble LR (2007) Emigration timing of juvenile pond-breeding amphibians in western Massachusetts. J Herpetol 41:243–250

    Google Scholar 

  • Turner TF, Trexler JC (1998) Ecological and historical associations of gene flow in darters (Teleostei: Percidae). Evolution 52:1781–1801

    Article  Google Scholar 

  • Vasconcelos HL (1999) Effects of forest disturbance on the structure of ground-foraging ant communities in central Amazonia. Biodivers Conserv 8:409–420

    Google Scholar 

  • Vasconcelos D, Calhoun AJK (2004) Movement patterns of adult and juvenile Rana sylvatica (LeConte) and Ambystoma maculatum (Shaw) in three restored seasonal pools in Maine. J Herpetol 38:551–561. doi:10.1670/157-03a

    Article  Google Scholar 

  • Veysey JS, Babbitt KJ, Cooper A (2009) An experimental assessment of buffer width: implications for salamander migratory behavior. Biol Conserv 142:2227–2239. doi:10.1016/j.biocon.2009.04.024

    Google Scholar 

  • Wang JL (2004) Sibship reconstruction from genetic data with typing errors. Genet 166:1963–1979

    Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS (2010) Spatial-temporal stratifications in natural populations and how they affect understanding and estimation of effective population size. Mol Ecol Resour 10:785–796. doi:10.1111/j.1755-0998.2010.02876.x

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262. doi:10.1111/j.1752-4571.2009.00104.x

    Article  PubMed Central  Google Scholar 

  • Waples RS, England PR (2011) Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189:633–644. doi:10.1534/genetics.111.132233

    Article  PubMed Central  PubMed  Google Scholar 

  • Waples RS, Luikart G, Faulkner JR, Tallmon DA (2013) Simple life-history traits explain key effective population size ratios across diverse taxa. Proc R Soc B 280:20131339. doi:10.1098/rspb.2013.1339

    Article  PubMed  Google Scholar 

  • Whiteley AR, Spruell P, Allendorf FW (2004) Ecological and life history characteristics predict population genetic divergence of two salmonids in the same landscape. Mol Ecol 13:3675–3688

    Article  PubMed  Google Scholar 

  • Whiteley AR, Spruell P, Allendorf FW (2006) Can common species provide valuable information for conservation? Mol Ecol 15:2767–2786

    Article  PubMed  Google Scholar 

  • Whiteley AR, Coombs JA, Hudy M, Robinson Z, Nislow KH, Letcher BH (2012) Sampling strategies for estimating brook trout effective population size. Conserv Genet 13:625–637. doi:10.1007/s10592-011-0313-y

    Article  Google Scholar 

  • Whitford WG, Vinegar A (1966) Homing, survivorship, and overwintering of larvae of spotted salamanders, Ambystoma maculatum. Copeia 1966:515–519

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST does not equal 1/(4Nm + 1). Heredity 82:117–125. doi:10.1038/sj.hdy.6884960

    Article  PubMed  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. vol 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago

    Google Scholar 

  • Zamudio KR, Wieczorek AM (2007) Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Mol Ecol 16:257–274. doi:10.1111/j.1365-294X.2006.03139.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank B. Compton for spotted salamander sample collection and helpful discussions. M. Chesser and J. Estes helped with sample collection. J. Estes, S. Jane, A. Pant, and K. Pilgrim conducted genetic data collection. S. Jackson, B. Cook, and P. Fenton provided important natural history information. We thank D. Chapple and two anonymous reviewers for helpful comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Whiteley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteley, A.R., McGarigal, K. & Schwartz, M.K. Pronounced differences in genetic structure despite overall ecological similarity for two Ambystoma salamanders in the same landscape. Conserv Genet 15, 573–591 (2014). https://doi.org/10.1007/s10592-014-0562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0562-7

Keywords

Navigation