Skip to main content

Advertisement

Log in

Specific isolation of disseminated cancer cells: a new method permitting sensitive detection of target molecules of diagnostic and therapeutic value

  • Original Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Molecular studies of rare cells, such as circulating cancer cells, require efficient pre-enrichment steps to obtain a pure population of target cells for further characterization. We have developed a two-step approach, starting with immunomagnetic enrichment, followed by specific isolation of individual, easily identifiable bead-rosetted target cells using a new semi-automated CellPick system. With this procedure, 1–50 live target cells can now be isolated. As a model system, we spiked a small number of tumor cells into millions of normal mononuclear cells (MNCs). Efficient isolation of pure target cells was obtained by use of the CellPick system, and the nature of isolated, bead-rosetted cells was verified by use of FISH. Single breast cancer cells were picked directly into an RNA preserving lysis buffer, reverse transcribed, and PCR amplified with two cDNA specific primer sets. With the isolated cells we consistently obtained both ubiquitously expressed and tumor cell specific PCR products. We also performed a successful mutation analysis of single cells using PCR and cycling temperature capillary electrophoresis (CTCE). This may have significant clinical implications in cancer and in other diseases, e.g. in characterizing micrometastatic cancer cells in blood and lymph nodes to help identifying patients who most likely will respond to therapies like tyrosine kinase inhibitors and compounds targeting specific mutations. By use of the CellPick system it is possible to specifically isolate bead-rosetted or otherwise labelled target cells from a heterogeneous cell population for further molecular characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fidler IJ (1970) Metastasis: guantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 45(4):773–782

    PubMed  CAS  Google Scholar 

  2. Luzzi KJ, MacDonald IC, Schmidt EE, et al. (1998) Multistep nature of metastatic inefficiency:dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153(3):865–873

    PubMed  CAS  Google Scholar 

  3. Wiedswang G, Borgen E, Karesen R, et al. (2003) Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J Clin Oncol 21(18):3469–3478

    Article  PubMed  CAS  Google Scholar 

  4. Braun S, Vogl FD, Naume B, et al. (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353(8):793–802

    Article  PubMed  CAS  Google Scholar 

  5. Bruland OS, Hoifodt H, Saeter G, et al. (2005) Hematogenous micrometastases in osteosarcoma patients. Clin Cancer Res 11(13):4666–4673

    Article  PubMed  CAS  Google Scholar 

  6. Faye RS, Aamdal S, Hoifodt HK, et al. (2004) Immunomagnetic detection and clinical significance of micrometastatic tumor cells in malignant melanoma patients. Clin Cancer Res 10(12 Pt 1):4134–4139

    Article  PubMed  CAS  Google Scholar 

  7. Cristofanilli M, Budd GT, Ellis MJ, et al. (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791

    Article  PubMed  CAS  Google Scholar 

  8. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    Article  PubMed  CAS  Google Scholar 

  9. Slamon DJ, Godolphin W, Jones LA, et al. (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712

    Article  PubMed  CAS  Google Scholar 

  10. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197 (4306):893–895

    Article  PubMed  CAS  Google Scholar 

  11. Fidler IJ, Talmadge JE (1986) Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res 46(10):5167–5171

    PubMed  CAS  Google Scholar 

  12. Talmadge JE, Wolman SR, Fidler IJ (1982) Evidence for the clonal origin of spontaneous metastases. Science 217(4557):361–363

    Article  PubMed  CAS  Google Scholar 

  13. Fodstad O, Faye R, Hoifodt HK, et al. (2001) Immunobead-based detection and characterization of circulating tumor cells in melanoma patients. Recent Results Cancer Res 158:40–50

    PubMed  CAS  Google Scholar 

  14. Flatmark K, Bjornland K, Johannessen HO, et al. (2002) Immunomagnetic detection of micrometastatic cells in bone marrow of colorectal cancer patients. Clin Cancer Res 8(2):444–449

    PubMed  Google Scholar 

  15. Fodstad O, Kjonniksen I, Aamdal S, et al. (1988) Extrapulmonary, tissue-specific metastasis formation in nude mice injected with FEMX-I human melanoma cells. Cancer Res 48(15):4382–4389

    PubMed  CAS  Google Scholar 

  16. Yamamoto N, Yang M, Jiang P, et al. (2004) Color coding cancer cells with fluorescent proteins to visualize in vivo cellular interaction in metastatic colonies. Anticancer Res 24(6):4067–4072

    PubMed  Google Scholar 

  17. Bjornland K, Flatmark K, Mala T, et al. (2003) Detection of disseminated tumour cells in bone marrow of patients with isolated liver metastases from colorectal cancer. J Surg Oncol 82(4):224–227

    Article  PubMed  Google Scholar 

  18. Imai K, Wilson BS, Bigotti A, et al. (1982) A 94,000-dalton glycoprotein expressed by human melanoma and carcinoma cells. J Natl Cancer Inst 68(5):761–769

    PubMed  CAS  Google Scholar 

  19. Hinselwood DC, Abrahamsen TW, Ekstrom PO (2005) BRAF mutation detection and identification by cycling temperature capillary electrophoresis. Electrophoresis 26(13):2553–2561

    Article  PubMed  CAS  Google Scholar 

  20. Klein CA, Schmidt-Kittler O, Schardt JA, et al. (1999) Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci USA 96(8):4494–4499

    Article  PubMed  CAS  Google Scholar 

  21. Fleming TP, Watson MA (2000) Mammaglobin, a breast-specific gene, and its utility as a marker for breast cancer. Ann N Y Acad Sci 923:78–89

    Article  PubMed  CAS  Google Scholar 

  22. Zehentner BK, Carter D (2004) Mammaglobin: a candidate diagnostic marker for breast cancer. Clin Biochem 37(4):249–257

    Article  PubMed  CAS  Google Scholar 

  23. Sorlie T, Perou CM, Tibshirani R, et al. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  CAS  Google Scholar 

  24. van ‘t Veer LJ, Dai H, van de Vijver MJ, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  PubMed  Google Scholar 

  25. Ramaswamy S, Ross KN, Lander ES, et al. (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54

    Article  PubMed  CAS  Google Scholar 

  26. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  PubMed  CAS  Google Scholar 

  27. Leinung S, Wurl P, Weiss CL, et al. (2000) Cytokeratin-positive cells in bone marrow in comparison with other prognostic factors in colon carcinoma. Langenbecks Arch Surg 385(5):337–343

    Article  PubMed  CAS  Google Scholar 

  28. Macadam R, Sarela A, Wilson J, et al. (2003) Bone marrow micrometastases predict early post-operative recurrence following surgical resection of oesophageal and gastric carcinoma. Eur J Surg Oncol 29(5):450–454

    Article  PubMed  Google Scholar 

  29. Pantel K, Izbicki J, Passlick B, et al. (1996) Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet 347(9002):649–653

    Article  PubMed  CAS  Google Scholar 

  30. Klein CA, Blankenstein TJ, Schmidt-Kittler O, et al. (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360(9334):683–689

    Article  PubMed  CAS  Google Scholar 

  31. Schmidt-Kittler O, Ragg T, Daskalakis A, et al. (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100(13):7737–7742

    Article  PubMed  CAS  Google Scholar 

  32. Strumberg D, Richly H, Hilger RA, et al. (2005) Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43–9006 in patients with advanced refractory solid tumors. J Clin Oncol 23(5):965–972

    Article  PubMed  CAS  Google Scholar 

  33. Sharma A, Trivedi NR, Zimmerman MA, et al. (2005) Mutant V599 EB-Raf regulates growth and vascular development of malignant melanoma tumors. Cancer Res 65(6):2412–2421

    Article  PubMed  CAS  Google Scholar 

  34. Lynch TJ, Bell DW, Sordella R, et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139

    Article  PubMed  CAS  Google Scholar 

  35. Paez JG, Janne PA, Lee JC, et al. (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Stine Kresse for excellent tutorials in the FISH procedure and Karen Marie Heintz for performing all the CTCE analyses. This work was supported by the Norwegian Cancer Society, the Research Council of Norway and the Anna Lovise Lundeby Memorial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siri Tveito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tveito, S., Maelandsmo, G.M., Hoifodt, H.K. et al. Specific isolation of disseminated cancer cells: a new method permitting sensitive detection of target molecules of diagnostic and therapeutic value. Clin Exp Metastasis 24, 317–327 (2007). https://doi.org/10.1007/s10585-006-9052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9052-8

Keywords

Navigation