Skip to main content

Advertisement

Log in

Comparison of vitrification and slow cooling for umbilical tissues

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The tissue cryopreservation maintains the cellular metabolism in a quiescence state and makes the conservation possible for an indefinite period of time. The choice of an appropriate cryopreservation protocol is essential for maintenance of cryopreserved tissue banks. This study evaluated 10 samples of umbilical cord, from which small fragments of tissue (Wharton’s jelly and cord lining membrane) were subjected to two protocols of cryopreservation: slow cooling and vitrification. The samples were frozen for a period of time ranging from 5 to 78 days. The efficiency of cryopreservation was evaluated by testing cell viability, histological analysis, cell culture, cytogenetic analysis and comparison with the results of the fresh samples. The results showed that the slow cooling protocol was more efficient than the vitrification for cryopreservation of umbilical cord tissue, because it has caused fewer changes in the structure of tissue (edema and degeneration of the epithelium) and, despite the significant decrease cell viability compared to fresh samples, the ability of cell proliferation in vitro was preserved in most samples. In conclusion, this study showed that it is possible to cryopreserve small fragments of tissue from the umbilical cord and, to obtain viable cells capable of proliferation in vitro after thawing, contributing to the creation of a frozen tissue bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agudelo CA, Iwata AH (2008) The development of alternative vitrification solutions for microencapsulated islets. Biomaterials 29:167–176

    Article  Google Scholar 

  • Al-Hasani S, Diedrich K, Van der Ven H et al (1987) Cryopreservation of human oocytes. Hum Reprod 2:695–700

    PubMed  CAS  Google Scholar 

  • Benkhalifa MM, Janny L, Vye P, Malet P, Boucher D, Menezo Y et al (1993) Assessment of polyploidy in human morulae and blastocysts using co-culture and fluorescent in situ hybridization. Hum Reprod 8:895–902

    PubMed  CAS  Google Scholar 

  • Bouquet M, Selva J, Aurox M (1992) The incidence of chromosomal abnormalities in frozen-thawed mouse oocytes after in vitro fertilization. Hum Reprod 7:76–80

    PubMed  CAS  Google Scholar 

  • Coticchio G, Bromfield JJ, Sciajno R, Gambardella A, Scaravelli G, Borini A, Albertini DF (2009) Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod BioMed Online 19:29–34

    Article  PubMed  Google Scholar 

  • Covas DT, Siufi JL, Silva AR, Orellana MD (2003) Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res 36:1179–1183

    Article  PubMed  CAS  Google Scholar 

  • Curaba M, Poels J, van Langendonckt A, Donnez J, Wyns C (2011) Can prepubertal human testicular tissue be cryopreserved by vitrification? Fertil Steril 95(6):2123.e9–2123.e12

    Google Scholar 

  • Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, Martinez-Madrid B, van Langendonckt A (2004) Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet 364:1405–1410

    Article  PubMed  CAS  Google Scholar 

  • Fahy GM, Wowk B, Wu J, Paynter S (2004) Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35

    Article  PubMed  CAS  Google Scholar 

  • Filho GB (2011) Bogliolo Patologia. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Gaucher S, Elie C, Vérola O, Jarraya M (2011) Viability of cryopreserved human skin allografts: effects of transport media and cryoprotectant. Cell Tissue Bank. doi:10.1007/s10561-011-9239-3

  • Glenister PH, Wood MJ, Kirby C, Whittingham DG (1987) Incidence of chromosome anomalies in first-cleavage mouse embryos obtained from frozen-thawed oocytes fertilized in vitro. Gamete Res 16:205–216

    Article  PubMed  CAS  Google Scholar 

  • Gonda K, Shigeura T, Sato T, Matsumoto D, Suga H, Inoue K, Aoi N, Kato H, Sato K, Murase S, Koshima I, Yoshimura (2008) Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast Reconstr Surg 121:401–410

  • Gook DA, McCully BA, Edgar DH, McBain JC (2001) Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod 16:417–422

    Article  PubMed  CAS  Google Scholar 

  • Goud A, Goud P, Qian C, Van der Elst J, Van Maele G, Dhont M (2000) Cryopreservation of human germinal vesicle stage and in vitro matured M II oocytes: influence of cryopreservation media on the survival, fertilization, and early cleavage divisions. Fertil Steril 74(3):487–494

    Article  PubMed  CAS  Google Scholar 

  • Gouk SS, Loh YF, Kumar SD, Watson PF, Kuleshova LL (2011) Cryopreservation of mouse testicular tissue: prospect for harvesting spermatogonial stem cells for fertility preservation. Fertil Steril 95(7):2399–2403

    Article  PubMed  Google Scholar 

  • Gustashaw KM (1997) Chromosome stains. In: The AGT Cytogenetics Laboratory Manual, 3rd edn. Lippincott-Raven, New York, pp 259–324

  • Hengstler JG, Utesch D, Steinberg P, Platt KL, Diener B, Ringel M, Swales N, Fischer T, Biefang K, Gerl M, Böttger T, Oesch F (2000) Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 32:81–118

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Lee TH, Chen SU, Chen HH, Cheng TC, Liu CH, Yang YS, Lee MS (2005) Successful pregnancy following blastocyst cryopreservation using super-cooling ultra-rapid vitrification. Hum Reprod 20(1):122–128

    Article  PubMed  Google Scholar 

  • Huang L, Mo Y, Wang W, Li Y, Zhang Q, Yang D (2008) Cryopreservation of human ovarian tissue by solid-surface vitrification. Eur J Obstet Gynecol Reprod Biol 139(2):193–198

    Article  PubMed  CAS  Google Scholar 

  • Ieropoli S, Masullo P, Santo Mdo E, Sansone G (2004) Effects of extender composition, cooling rate and freezing on the fertilization viability of spermatozoa of the Pacific oyster (Crassostrea gigas). Cryobiology 49:250–257

    Article  PubMed  CAS  Google Scholar 

  • Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, Nakauchi H, Tojo A (2009) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol 90:261–269

    Article  PubMed  Google Scholar 

  • Karlsson JO, Toner M (1996) Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17:243–256

    Article  PubMed  CAS  Google Scholar 

  • Kasai M, Komi JH, Takakamo A, Tsudera H, Sakurai T, Machida T (1990) A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J Reprod Fertil 89:91–97

    Article  PubMed  CAS  Google Scholar 

  • Keros V, Xella S, Hultenby K, Pettersson K, Sheikhi M, Volpe A, Hreinsson J, Hovatta (2009) Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod 24:1670–1683

  • Kim GA, Kim HY, Kim JW, Lee G, Lee E, Ahn JY, Park JH, Lim JM (2011) Effectiveness of slow freezing and vitrification for long-term preservation of mouse ovarian tissue. Theriogenology 75:1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG (2010) Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev 9(4):491–502

    Article  Google Scholar 

  • Kuhnel W (2005) Citologia, Histologia e Anatomia microscópica. Artmed, Porto Alegre

    Google Scholar 

  • Kuleshova LL, Lopata AMB (2002) Vitrification can be more favorable than slow cooling. Fertil Steril 78(3):449–454

    Article  PubMed  Google Scholar 

  • Kuleshova LL, Gouka SS, Hutmacher DW (2007) Vitrication as a prospect for cryopreservation of tissue-engineered constructs. Biomaterials 28:1585–1596

    Article  PubMed  CAS  Google Scholar 

  • Kvist K, Thorup J, Byskov AG, Høyer PE, Mollgard K, Yding Andersen C (2006) Cryopreservation of intact testicular tissue from boys with cryptorchidism. Hum Reprod 21(2):484–491

    Article  PubMed  CAS  Google Scholar 

  • Lehle K, Hoenicka M, Jacobs VR, Schmid FX, Birnbaum DE (2005) Cryopreservation of human endothelial cells for vascular tissue engineering. Cryobiology 50:154–161

    Article  PubMed  CAS  Google Scholar 

  • Luciano AM, Chigioni S, Lodde V, Franciosi F, Luvoni GC, Modina SC (2009) Effect of different cryopreservation protocols on cytoskeleton and gap junction mediated communication integrity in feline germinal vesicle stage oocytes. Cryobiology 59:90–95

    Article  PubMed  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physio 247:125–142

    Google Scholar 

  • Meirow D, Levron J, Eldar-Geva T, Hardan I, Fridman E, Zalel Y, Schiff E, Dor J (2005) Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med 353(3):318–321

    Article  PubMed  CAS  Google Scholar 

  • Meryman HT (2007) Cryopreservation of living cells: principles and practice. Transfusion 47:935–945

    Article  PubMed  CAS  Google Scholar 

  • Meryman HT, Kafig E (1955) Rapid freezing and thawing of whole blood. Proc Soc Exp Biol Med 90(3):587–589

    PubMed  CAS  Google Scholar 

  • Metze K (2004) Patologia Geral, 3 edn. Guanabara Koogan, Rio de Janeiro

  • Miyamoto Y, Suzuki S, Nomura K, Enosawa S (2006) Improvement of hepatocyte viability after cryopreservation by supplementation of long-chain oligosaccharide in the freezing medium in rats and humans. Cell Transpl 15:911–919

    Article  Google Scholar 

  • Murua A, Orive G, Hernández RM, Pedraz JL (2009) Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials 30:3495–3501

    Article  PubMed  CAS  Google Scholar 

  • Naro E, Ghezzi F, Raio L, Franchi M, D’Addario V (2001) Umbilical cord morphology and pregnancy outcome. Eur J Obstet Reprod Biol 96:150–157

    Article  Google Scholar 

  • Newton H, Aubard Y, Rutherford A, Sharma V, Gosden R (1996) Low temperature storage and grafting of human ovarian tissue. Hum Reprod 11:1487–1491

    Article  PubMed  CAS  Google Scholar 

  • Notman R, Noro M, O’Malley B, Anwar J (2006) Molecular basis for Dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc 128:13982–13983

    Article  PubMed  CAS  Google Scholar 

  • Oktay K, Buyuk E, Veeck L, Zaninovic N, Xu K, Takeuchi T, Opsahl M, Rosenwaks Z (2004) Embryo development after heterotopic transplantation ovarian tissue. Lancet 363:837–840

    Article  PubMed  Google Scholar 

  • Oskam I, Lund T, Santos R (2011) Irreversible damage in ovine ovarian tissue after cryopreservation in propanediol: analyses after in vitro culture and xenotransplantation. Reprod Dom Anim. doi:10.1111/j.1439-0531.2010.01743.x

  • Rowe AW (1996) Cryopreservation in blood banking—frozen blood for transfusion preservation of blood by the low glycerol-rapid freeze process. Vox Sang 70(3):50–56

    Article  Google Scholar 

  • Salvetti P, Buff S, Afanassieff M, Daniel N, Guérin P, Joly T (2010) Structural, metabolic and developmental evaluation of ovulated rabbit oocytes before and after cryopreservation by vitrification and slow freezing. Theriogenology 74:847–855

    Article  PubMed  CAS  Google Scholar 

  • Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229

    Article  PubMed  Google Scholar 

  • Secco M, Zucconi E, Vieira NM, Fogaça LL, Cerqueira A, Carvalho MD, Jazedje T, Okamoto OK, Muotri AR, Zatz M (2008) Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells 26:146–150

    Article  PubMed  CAS  Google Scholar 

  • Son JH, Kim KH, Nam YK, Park JK, Kim SK (2004) Optimization of cryoprotectants for cryopreservation of rat hepatocyte. Biotechnol Lett 26:829–833

    Article  PubMed  CAS  Google Scholar 

  • Song YC, An YH, Kang QK, Li C, Boggs JM, Chen Z, Taylor MJ, Brockbank KGM (2004) Vitreous preservation of articular cartilage grafts. J Invest Surg 17:65–70

    Article  PubMed  Google Scholar 

  • Succu S, Leoni GG, Berlinguer F, Madeddu M, Bebbere D, Mossa F, Bogliolo L, Ledda S, Naitana S (2007) Effect of vitrification solutions and cooling upon in vitro matured prepubertal ovine oocytes. Theriogenology 68:107–114

    Article  PubMed  CAS  Google Scholar 

  • Succu S, Bebbere D, Bogliolo L, Ariu F, Fois S, Leoni GG, Berlinguer F, Naitana S, Ledda S (2008) Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Mol Reprod Dev 75:538–546

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Hirsh A, Erbe E, Williams RJ (1988) Mechanism of cryoprotection by extracellular polymeric solutes. Biophys J 54:509–518

    Article  PubMed  CAS  Google Scholar 

  • Thomaz BAC, Biondo-Simões MLP, Almodin CG, Minguetti-Camara VC, Ceschin AP, Ioshii SO (2005) Aspectos histológicos do ovário de coelhas após criopreservação. Rev Bras Ginecol Obstet 27(11):642–649

    Article  Google Scholar 

  • Valeri CR, Ragno G, Pivacek LE, Cassidy GP, Srey R, Hansson-Wicher M, Leavy ME (2000) An experiment with glycerol-frozen red blood cells stored at 80 degrees for up to 37 years. Vox Sang 79:168–174

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Hua TC, Sun DW, Liu B, Yang G, Cao Y (2007) Cryopreservation of tissue-engineered dermal replacement in Me2SO: toxicity study and effects of concentration and cooling rates on cell viability. Cryobiology 55:60–65

    Article  PubMed  CAS  Google Scholar 

  • Weiss ML, Troyer D (2006) Stem cells in the umbilical cord. Stem Cell Rev 2:155–1663

    Article  PubMed  CAS  Google Scholar 

  • Yokota Y, Sato S, Yokota M, Ishikawa Y, Makita M, Asada T, Araki Y (2000) Successful pregnancy following blastocyst vitrification. Hum Reprod 15(8):1802–1803

    Article  PubMed  CAS  Google Scholar 

  • Yu HB, Shen GF, Wei FC (2007) Effect of cryopreservation on the immunogenicity of osteoblasts. Transpl Proc 39:3030–3031

    Article  CAS  Google Scholar 

  • Yu-Bin L, Zhou CQ, Yang GF, Wang Q, Dong Y (2007) Modified vitrification method for cryopreservation of human ovarian tissues. Chin Med J 120:110–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greicy Helen Ribeiro Gambarini-Paiva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Da-Croce, L., Gambarini-Paiva, G.H.R., Angelo, P.C. et al. Comparison of vitrification and slow cooling for umbilical tissues. Cell Tissue Bank 14, 65–76 (2013). https://doi.org/10.1007/s10561-012-9301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-012-9301-9

Keywords

Navigation