Skip to main content

Advertisement

Log in

Human amnion as a novel cell delivery vehicle for chondrogenic mesenchymal stem cells

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barry F, Boynton RE, Liu B et al (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189–200

    Article  PubMed  CAS  Google Scholar 

  • Both SK, Van Der Muijsenberg AJC, Van Blitterswijk CA et al (2007) A rapid and efficient method for expansion of human mesenchymal stem cells. Tissue Eng 13(1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Calvin SE, Oyen ML (2007) Microstructure and mechanics of the chorioamnion membrane with an emphasis on fracture properties. Ann N Y Acad Sci 1101:166–185

    Article  PubMed  Google Scholar 

  • Chong PP, Kamarul T, Jalil K et al (2008) Processing and bioburden analysis of human amniotic membrane for biological and tissue engineering application—a preliminary report. J Asian Orthop Assoc 19(1):28–34

    Google Scholar 

  • Cohen M, Kam Z, Addadi L et al (2006) Dynamic study of the transition from hyaluronan—to intergrin-mediated adhession in chondrocytes. EMBO 25:302–311

    Article  CAS  Google Scholar 

  • Darling EM, Athanasiou KA (2006) Rapid phenotypic changes in passaged articular chondrocyte populations. J Othop Res 23(2):425–432

    Article  Google Scholar 

  • Davis JW (1910) Skin transplantation with a review of 550 cases at the Johns Hopkins hospital. Johns Hopkins Med J 15:307

    Google Scholar 

  • Facchini A, Lisignoli G, Cristino S et al (2006) Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold. Biorheology 43:471–480

    PubMed  Google Scholar 

  • Farazdaghi M, Adler J, Farazdaghi SM (2001) Electron microscopy of human amniotic membrane. Adv Tissue Bank 5:149–169

    Google Scholar 

  • Gal P, Necas A, Planka L et al (2007) Chondrocytic potential of allogenic mesenchymal stem cells transplanted without immunosuppression to regenerate physeal defect in rabbits. Acta Vet Brno 76:265–275

    Article  Google Scholar 

  • Hangody L, Vasarhelyi G, Hangody LR et al (2008) Autologous osteochondral grafting-technique and long-term results. Injury 39(S1):S32–S39

    Article  PubMed  Google Scholar 

  • Hegewald AA, Ringe J, Bartel J et al (2004) Hyaluronic acid and autologous synovial fluid induce chondrogenic differetniation of equine mesenchymal stem cells: a preliminary study. Tissue Cell 36:421–438

    Article  Google Scholar 

  • Higa K, Shimmura S, Shimazaki J et al (2005) Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea 24(2):206–212

    Article  PubMed  Google Scholar 

  • Jin CZ, Park SR, Choi BH et al (2007) Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng 13(4):693–702

    Article  PubMed  CAS  Google Scholar 

  • Kjaergaard N, Hein M, Hyttel L et al (2001) Antibacterial properties of human amnion and chorion in vitro. Eur J Obstet Gynecol Reprod Biol 94:224–229

    Article  PubMed  CAS  Google Scholar 

  • Knudson W, Aguiar DJ, Hua Q et al (1996) CD44-anchored hyaluronan-rich pericellular matrices: an ultracellular and biochemical analysis. Exp Cell Res 228:216–228

    Article  PubMed  CAS  Google Scholar 

  • Kumar TR, Shanmugasundaram N, Babu M (2003) Biocompatible collagen scaffolds from a human amniotic membrane: physiochemical and in vitro culture characteristics. J Biomater Sci 14:689–706

    Article  CAS  Google Scholar 

  • Lee EH, Hui JHP (2006) The potential of stem cells in orthopaedic surgery. J Bone Joint Surg Br 88B(2):841–851

    Google Scholar 

  • Lee S-H, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5):339–359

    Article  PubMed  CAS  Google Scholar 

  • Lymann DJ, Seare WJ (1974) Biomedical materials in surgery. Annu Rev Mater Sci 4:415–433

    Article  Google Scholar 

  • Malak TM, Ockleford CD, Bell SC et al (1993) Confocal immunofluorescence localization of collagen type I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 14:385–406

    Article  PubMed  CAS  Google Scholar 

  • Marlovits S, Zeller P, Singer P et al (2006) Cartilage repair: generation of autologous chondrocyte transplantation. Eur J Radiol 57:24–31

    Article  PubMed  Google Scholar 

  • Meinert M, Eriksen GV, Petersen AC et al (2001) Proteoglycans and hyaluronan in human fetal membranes. Am J Obstet Gynecol 184:679–685

    Article  PubMed  CAS  Google Scholar 

  • Mithoefer K, Williams RJ, Warren RF et al (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Br 87A(9):1911–1920

    Article  Google Scholar 

  • Mohamad H (2001) Anatomy and embryology of human placenta, amnion and chorion. Adv Tissue Bank 5:139–148

    Google Scholar 

  • Murdoch AD, Dodge GR, Cohen I et al (1992) Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Biol Chem 267:8544–8557

    PubMed  CAS  Google Scholar 

  • Nakamura T, Yoshitani M, Rigby H et al (2004) Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Invest Ophthalmol Vis Sci 45(1):93–99

    Article  PubMed  Google Scholar 

  • Niknejad H, Peirovi H, Jorjani M et al (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99

    PubMed  CAS  Google Scholar 

  • Norimah Y, Asnah H, Firdaus MN et al (2006) Challenges in validating the sterilization dose for processed human amniotic membranes. Rad Phys Chem 76(11–12):1756–1759

    Google Scholar 

  • Parry S, Straus JF (1998) Premature rupture of the fetal membranes. N Eng J Med 338:663–670

    Article  CAS  Google Scholar 

  • Peterson L, Brittberg M, Kiviranta I et al (2002) Autologous chondrocyte transplantation. Am J Sports Med 30:2–12

    PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Sci 284(5411):143–147

    Article  CAS  Google Scholar 

  • Quinby WC Jr, Hoover HC, Scheflan M et al (1982) Clinical trials of amniotic membranes in burn wound care. Plast Reconstr Surg 70:711–716

    Article  PubMed  Google Scholar 

  • Schrader S, Wedel T, Kremling C et al (2007) Amniotic membrane as a carrier for lacrimal gland acrinar cells. Graefes Arch Clin Exp Ophthalmol 245(11):1699–1704

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Purohit S, Chacharkar MP (2007) Effect of high doses of gamma radiation on the functional characteristics of amniotic membrane. Rad Phys Chem 76:1026–1030

    Article  CAS  Google Scholar 

  • Steinwachs MR, Th Guggi, Kreuz PC (2008) Marrow stimulation techniques. Injury 39(S1):S26–S31

    Article  PubMed  Google Scholar 

  • Subramanyam M (1995) Amniotic membrane as a cover for microskin grafts. Br J Plast Surg 48:477–478

    Article  Google Scholar 

  • Wakitani S, Kimura T, Hirooka A et al (1989) Repair of rabbit articulat surface with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg (Br) 71-B:74–80

    Google Scholar 

  • Ward DJ, Bennett JP, Burgos H et al (1989) The healing of chronic venous leg ulcers with prepared human amnion. Br J Plast Surg 42:463–467

    Article  PubMed  CAS  Google Scholar 

  • Wilshaw SP, Kearney JN, Fisher J et al (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12(8):2117–2129

    Article  PubMed  CAS  Google Scholar 

  • Wilshaw S-P, Kearney J, Fisher J et al (2008) Biocompatibility and potential of acellular human amniotic membrane to support the attachment and proliferation of allogenic cells. Tissue Eng 14(4):463–472

    Article  CAS  Google Scholar 

  • Yang X, Moldovan NI, Zhao Q et al (2008) Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Mol Vis 5(14):1064–1070

    Google Scholar 

  • Zhu H, Mitsuhashi N, Klein A et al (2006) The role of hyaluronan receptor CD44 in mesenchymal stem cells migration in the extracellular matrix. Stem Cells 24:928–935

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by E-Science grant from Ministry of Science, Technology and Innovation (12-02-03-2017) and FRGS FQQ002/2007A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kamarul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, SL., Sulaiman, S., Pingguan-Murphy, B. et al. Human amnion as a novel cell delivery vehicle for chondrogenic mesenchymal stem cells. Cell Tissue Bank 12, 59–70 (2011). https://doi.org/10.1007/s10561-009-9164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-009-9164-x

Keywords

Navigation