Skip to main content

Advertisement

Log in

A functional SNP in the MDM2 promoter, pigmentary phenotypes, and risk of skin cancer

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

The MDM2 oncoprotein is a key negative regulator of the tumor suppressor p53. A functional MDM2 single nucleotide polymorphism (SNP309) in the promoter region increases the affinity of transcription activator Sp1 for the MDM2 gene promoter, resulting in higher expression of MDM2 and thus inhibition of p53 transcriptional activity. UV-induced p53 activation promotes cutaneous transient pigmentation, and the common p53 Arg72Pro polymorphism alters the protein’s transcriptional activity. We evaluated the effect of MDM2 SNP309 and its interaction with the p53 Arg72Pro polymorphism on pigmentary phenotypes and skin cancer risk in a nested case–control study within the Nurses’ Health Study (NHS) among 219 melanoma cases, 286 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 873 controls, and among controls from other studies. We found that the G allele of the MDM2 SNP309 was inversely associated with the presence/absence of moles on the arm among 3,207 women pooled from controls of three nested case–control studies within the NHS. Compared with the MDM2 SNP309 T/T genotype, adjusted odds ratios (ORs) of having moles on the arms for T/G and G/G genotypes were 0.92 (95% confidence interval (CI), 0.78–1.08) and 0.68 (95% CI, 0.53–0.87), respectively (p, trend, 0.005). We observed suggestive evidence of the association between the carriage of the MDM2 SNP309 G allele and childhood tanning tendency (adjusted OR, 1.30; 95% CI, 1.01–1.68). No significant associations were found between the MDM2 SNP309 and any of the three types of skin cancer. For SCC, the trend of increased risk across the three genotypes of MDM2 was stronger among p53 Pro carriers (p, trend, 0.05) than p53 Arg/Arg wild-type group (p, trend, 0.99; p, interaction, 0.07). These results provide evidence for the potential involvement of MDM2 SNP309 in pigmentary traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCC:

Basal cell carcinoma

SCC:

Squamous cell carcinoma

CI:

Confidence interval

OR:

Odds ratio

UV:

Ultraviolet

References

  1. Howe HL, Wingo PA, Thun MJ et al (2001) Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst 93:824–842. doi:10.1093/jnci/93.11.824

    Article  PubMed  CAS  Google Scholar 

  2. Brash DE (1997) Sunlight and the onset of skin cancer. Trends Genet 13:410–414. doi:10.1016/S0168-9525(97)01246-8

    Article  PubMed  CAS  Google Scholar 

  3. de Gruijl FR, van Kranen HJ, Mullenders LH (2001) UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. J Photochem Photobiol B 63:19–27. doi:10.1016/S1011-1344(01)00199-3

    Article  PubMed  Google Scholar 

  4. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445:843–850. doi:10.1038/nature05660

    Article  PubMed  CAS  Google Scholar 

  5. Tucker MA, Goldstein AM (2003) Melanoma etiology: where are we? Oncogene 22:3042–3052. doi:10.1038/sj.onc.1206444

    Article  PubMed  CAS  Google Scholar 

  6. Bond GL, Hu W, Levine AJ (2005) MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 5:3–8. doi:10.2174/1568009053332627

    Article  PubMed  CAS  Google Scholar 

  7. Fuchs SY, Adler V, Buschmann T, Wu X, Ronai Z (1998) Mdm2 association with p53 targets its ubiquitination. Oncogene 17:2543–2547. doi:10.1038/sj.onc.1202200

    Article  PubMed  CAS  Google Scholar 

  8. Cui R, Widlund HR, Feige E et al (2007) Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128:853–864. doi:10.1016/j.cell.2006.12.045

    Article  PubMed  CAS  Google Scholar 

  9. Pathak MA, Fanselow DL (1983) Photobiology of melanin pigmentation: dose/response of skin to sunlight and its contents. J Am Acad Dermatol 9:724–733. doi:10.1016/S0190-9622(83)70186-6

    Article  PubMed  CAS  Google Scholar 

  10. Schauer E, Trautinger F, Kock A et al (1994) Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J Clin Invest 93:2258–2262. doi:10.1172/JCI117224

    Article  PubMed  CAS  Google Scholar 

  11. Thomas M, Kalita A, Labrecque S et al (1999) Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19:1092–1100

    PubMed  CAS  Google Scholar 

  12. Dumont P, Leu JI, Della Pietra AC, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365. doi:10.1038/ng1093

    Article  PubMed  CAS  Google Scholar 

  13. Pim D, Banks L (2004) p53 polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer 108:196–199. doi:10.1002/ijc.11548

    Article  PubMed  CAS  Google Scholar 

  14. Nan H, Qureshi AA, Hunter DJ, Han J (2008) Interaction between p53 codon 72 polymorphism and melanocortin 1 receptor variants on suntan response and cutaneous melanoma risk. Br J Dermatol 159(2):314–321

    Article  PubMed  CAS  Google Scholar 

  15. Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602. doi:10.1016/j.cell.2004.11.022

    Article  PubMed  CAS  Google Scholar 

  16. Han J, Colditz GA, Hunter DJ (2006) Risk factors for skin cancers: a nested case-control study within the Nurses’ Health Study. Int J Epidemiol 35:1514–1521. doi:10.1093/ije/dyl197

    Article  PubMed  Google Scholar 

  17. Miettinen OS (1976) Stratification by a multivariate confounder score. Am J Epidemiol 104:609–620

    PubMed  CAS  Google Scholar 

  18. Han J, Kraft P, Colditz GA, Wong J, Hunter DJ (2006) Melanocortin 1 receptor variants and skin cancer risk. Int J Cancer 119:1976–1984. doi:10.1002/ijc.22074

    Article  PubMed  CAS  Google Scholar 

  19. James MR, Hayward NK, Dumenil T et al (2004) Epidermal growth factor gene (EGF) polymorphism and risk of melanocytic neoplasia. J Invest Dermatol 123:760–762. doi:10.1111/j.0022-202X.2004.23305.x

    Article  PubMed  CAS  Google Scholar 

  20. James MR, Roth RB, Shi MM et al (2005) BRAF polymorphisms and risk of melanocytic neoplasia. J Invest Dermatol 125:1252–1258. doi:10.1111/j.0022-202X.2005.23937.x

    Article  PubMed  CAS  Google Scholar 

  21. Chin L (2003) The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer 3:559–570. doi:10.1038/nrc1145

    Article  PubMed  CAS  Google Scholar 

  22. van Schanke A, van Venrooij GM, Jongsma MJ et al (2006) Induction of nevi and skin tumors in Ink4a/Arf Xpa knockout mice by neonatal, intermittent, or chronic UVB exposures. Cancer Res 66:2608–2615. doi:10.1158/0008-5472.CAN-05-2476

    Article  PubMed  Google Scholar 

  23. Kulms D, Schwarz T (2000) Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed 16:195–201. doi:10.1034/j.1600-0781.2000.160501.x

    Article  PubMed  CAS  Google Scholar 

  24. Van Laethem A, Claerhout S, Garmyn M, Agostinis P (2005) The sunburn cell: regulation of death and survival of the keratinocyte. Int J Biochem Cell Biol 37:1547–1553. doi:10.1016/j.biocel.2005.02.015

    Article  PubMed  Google Scholar 

  25. Wilkening S, Bermejo JL, Hemminki K (2007) MDM2 SNP309 and cancer risk: a combined analysis. Carcinogenesis 28:2262–2267. doi:10.1093/carcin/bgm191

    Article  PubMed  CAS  Google Scholar 

  26. Dharel N, Kato N, Muroyama R et al (2006) MDM2 promoter SNP309 is associated with the risk of hepatocellular carcinoma in patients with chronic hepatitis C. Clin Cancer Res 12:4867–4871. doi:10.1158/1078-0432.CCR-06-0111

    Article  PubMed  CAS  Google Scholar 

  27. Walsh CS, Miller CW, Karlan BY, Koeffler HP (2007) Association between a functional single nucleotide polymorphism in the MDM2 gene and sporadic endometrial cancer risk. Gynecol Oncol 104:660–664. doi:10.1016/j.ygyno.2006.10.008

    Article  PubMed  CAS  Google Scholar 

  28. Campbell IG, Eccles DM, Choong DY (2006) No association of the MDM2 SNP309 polymorphism with risk of breast or ovarian cancer. Cancer Lett 240:195–197. doi:10.1016/j.canlet.2005.09.003

    Article  PubMed  CAS  Google Scholar 

  29. Cox DG, Deer D, Guo Q et al (2007) The p53 Arg72Pro and MDM2-309 polymorphisms and risk of breast cancer in the nurses’ health studies. Cancer Causes Control 18:621–625. doi:10.1007/s10552-007-9004-x

    Article  PubMed  Google Scholar 

  30. Wilkening S, Hemminki K, Rudnai P et al (2007) No association between MDM2 SNP309 promoter polymorphism and basal cell carcinoma of the skin. Br J Dermatol 157:375–377. doi:10.1111/j.1365-2133.2007.07994.x

    Article  PubMed  CAS  Google Scholar 

  31. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310. doi:10.1038/35042675

    Article  PubMed  CAS  Google Scholar 

  32. Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245. doi:10.1016/0092-8674(92)90644-R

    Article  PubMed  CAS  Google Scholar 

  33. Oliner JD, Pietenpol JA, Thiagalingam S et al (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857–860. doi:10.1038/362857a0

    Article  PubMed  CAS  Google Scholar 

  34. Matlashewski GJ, Tuck S, Pim D et al (1987) Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol 7:961–963

    PubMed  CAS  Google Scholar 

  35. Alkhalaf M, Ganguli G, Messaddeq N, Le Meur M, Wasylyk B (1999) MDM2 overexpression generates a skin phenotype in both wild type and p53 null mice. Oncogene 18:1419–1434. doi:10.1038/sj.onc.1202448

    Article  PubMed  CAS  Google Scholar 

  36. Dazard JE, Augias D, Neel H et al (1997) MDM-2 protein is expressed in different layers of normal human skin. Oncogene 14:1123–1128. doi:10.1038/sj.onc.1200922

    Article  PubMed  CAS  Google Scholar 

  37. Dubs-Poterszman MC, Tocque B, Wasylyk B (1995) MDM2 transformation in the absence of p53 and abrogation of the p107 G1 cell-cycle arrest. Oncogene 11:2445–2449

    PubMed  CAS  Google Scholar 

  38. Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J (1996) Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med 2:912–917. doi:10.1038/nm0896-912

    Article  PubMed  CAS  Google Scholar 

  39. Branstrom R, Kristjansson S, Ullen H, Brandberg Y (2002) Stability of questionnaire items measuring behaviours, attitudes and stages of change related to sun exposure. Melanoma Res 12:513–519. doi:10.1097/00008390-200209000-00014

    Article  PubMed  CAS  Google Scholar 

  40. Glanz K, Schoenfeld E, Weinstock MA et al (2003) Development and reliability of a brief skin cancer risk assessment tool. Cancer Detect Prev 27:311–315. doi:10.1016/S0361-090X(03)00094-1

    Article  PubMed  Google Scholar 

  41. Westerdahl J, Anderson H, Olsson H, Ingvar C (1996) Reproducibility of a self-administered questionnaire for assessment of melanoma risk. Int J Epidemiol 25:245–251. doi:10.1093/ije/25.2.245

    Article  PubMed  CAS  Google Scholar 

  42. Buettner PG, Garbe C (2000) Agreement between self-assessment of melanocytic nevi by patients and dermatologic examination. Am J Epidemiol 151:72–77

    PubMed  CAS  Google Scholar 

  43. Little P, Keefe M, White J (1995) Self screening for risk of melanoma: validity of self mole counting by patients in a single general practice. BMJ 310:912–916

    PubMed  CAS  Google Scholar 

  44. Melia J, Harland C, Moss S, Eiser JR, Pendry L (2000) Feasibility of targeted early detection for melanoma: a population-based screening study. Br J Cancer 82:1605–1609. doi:10.1054/bjoc.2000.1183

    Article  PubMed  CAS  Google Scholar 

  45. Mikkilineni R, Weinstock MA (2000) Is the self-counting of moles a valid method of assessing melanoma risk? Arch Dermatol 136:1550–1551. doi:10.1001/archderm.136.12.1550

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Qun Guo for her programming support. We are indebted to the participants in the Nurses’ Health Study for their dedication and commitment.

Grant sponsor

NIH; Grant number: CA128080 and CA122838.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Nan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nan, H., Qureshi, A.A., Hunter, D.J. et al. A functional SNP in the MDM2 promoter, pigmentary phenotypes, and risk of skin cancer. Cancer Causes Control 20, 171–179 (2009). https://doi.org/10.1007/s10552-008-9231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-008-9231-9

Keywords

Navigation