Skip to main content

Advertisement

Log in

Matrix metalloproteinase-1 promotes breast cancer angiogenesis and osteolysis in a novel in vivo model

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Matrix metalloproteinase-1 (MMP-1) is critical for mediating breast cancer metastasis to bone. We investigated the role of MMP-1 in breast cancer invasion of soft tissues and bone using human MDA MB-231 breast cancer cells stably transfected with shRNAs against MMP-1 and a novel murine model of bone invasion. MMP-1 produced by breast cancer cells with control shRNA facilitated invasion of tumors into soft tissue in vivo, which correlated with enhanced blood vessel formation at the invasive edge, compared to tumors with silenced MMP-1 expression. Tumors expressing MMP-1 were also associated with osteolysis in vivo, whereas tumors with inhibited MMP-1 levels were not. Additionally, tumor-secreted MMP-1 activated bone-resorbing osteoclasts in vitro. Together, these data suggest a mechanism for MMP-1 in the activation of osteoclasts in vivo. We conclude that breast cancer-derived MMP-1 mediates invasion through soft tissues and bone via mechanisms involving matrix degradation, angiogenesis, and osteoclast activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATCC:

American Type Culture Collection

CM:

Conditioned media

DHMC:

Dartmouth-Hitchcock Medical Center

HMVECs:

Human microvessel endothelial cells

HPRT:

Hypoxanthine-phosphoribosyl transferase

H&E:

Hematoxylin and eosin

IHC:

Immunohistochemistry

LH:

Lactalbumin hydrolysate

LRR:

Local/regional recurrence

M-CSF:

Macrophage colony stimulating factor

MMP:

Matrix metalloproteins

RANKL:

Receptor activator of NF-κB ligand

shRNA:

Short hairpin RNA

TRAP:

Tartrate-resistant acid phosphatase

References

  1. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664. doi:10.1056/NEJMra030831

    Article  PubMed  CAS  Google Scholar 

  2. Yoneda T (2000) Cellular and molecular basis of preferential metastasis of breast cancer to bone. J Orthop Sci 5:75–81. doi:10.1007/s007760050012

    Article  PubMed  CAS  Google Scholar 

  3. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56. doi:10.1038/35065016

    Article  PubMed  CAS  Google Scholar 

  4. Coleman RE (2002) The clinical use of bone resorption markers in patients with malignant bone disease. Cancer 94:2521–2533. doi:10.1002/cncr.10522

    Article  PubMed  Google Scholar 

  5. Kozlow W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10:169–180. doi:10.1007/s10911-005-5399-8

    Article  PubMed  Google Scholar 

  6. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243s–6249s. doi:10.1158/1078-0432.CCR-06-0931

    Article  PubMed  Google Scholar 

  7. Taylor ME (2002) Breast cancer: chest wall recurrences. Curr Treat Options Oncol 3:175–177. doi:10.1007/s11864-002-0063-7

    Article  PubMed  Google Scholar 

  8. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. doi:10.1038/nrc745

    Article  PubMed  CAS  Google Scholar 

  9. Fingleton B (2006) Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci 11:479–491. doi:10.2741/1811

    Article  PubMed  CAS  Google Scholar 

  10. Loo WT, Cheung MN, Chow LW (2004) Production of matrix metalloproteinases in specific subpopulations of human-patient breast cancer invading in three dimensional culture system. Life Sci 76:743–752. doi:10.1016/j.lfs.2004.06.027

    Article  PubMed  CAS  Google Scholar 

  11. Balduyck M, Zerimech F, Gouyer V et al (2000) Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro. Clin Exp Metastasis 18:171–178. doi:10.1023/A:1006762425323

    Article  PubMed  CAS  Google Scholar 

  12. Toole BP, Linsenmayer TF (1977) Newer knowledge of skeletogenesis: macromolecular transitions in the extracellular matrix. Clin Orthop Relat Res 129:258–278

    Google Scholar 

  13. Rose AA, Siegel PM (2006) Breast cancer-derived factors facilitate osteolytic bone metastasis. Bull Cancer 93:931–943

    PubMed  CAS  Google Scholar 

  14. Kahari VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6:199–213. doi:10.1111/j.1600-0625.1997.tb00164.x

    Article  PubMed  CAS  Google Scholar 

  15. Pardo A, Selman M (2005) MMP-1: the elder of the family. Int J Biochem Cell Biol 37:283–288. doi:10.1016/j.biocel.2004.06.017

    Article  PubMed  CAS  Google Scholar 

  16. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549. doi:10.1016/S1535-6108(03)00132-6

    Article  PubMed  CAS  Google Scholar 

  17. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. doi:10.1038/nature01658

    Article  PubMed  CAS  Google Scholar 

  18. Holliday LS, Welgus HG, Fliszar CJ et al (1997) Initiation of osteoclast bone resorption by interstitial collagenase. J Biol Chem 272:22053–22058. doi:10.1074/jbc.272.35.22053

    Article  PubMed  CAS  Google Scholar 

  19. Baron R, Neff L, Louvard D et al (1985) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101:2210–2222. doi:10.1083/jcb.101.6.2210

    Article  PubMed  CAS  Google Scholar 

  20. Blair HC, Teitelbaum SL, Ghiselli R et al (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857. doi:10.1126/science.2528207

    Article  PubMed  CAS  Google Scholar 

  21. Chatterjee D, Chakraborty M, Leit M et al (1992) Sensitivity to vanadate and isoforms of subunits A and B distinguish the osteoclast proton pump from other vacuolar H+ ATPases. Proc Natl Acad Sci USA 89:6257–6261. doi:10.1073/pnas.89.14.6257

    Article  PubMed  CAS  Google Scholar 

  22. Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324. doi:10.1002/ar.1092240220

    Article  PubMed  CAS  Google Scholar 

  23. Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclasts. Clin Orthop Relat Res 231:239–271

    Google Scholar 

  24. Delaisse JM, Andersen TL, Engsig MT et al (2003) Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech 61:504–513. doi:10.1002/jemt.10374

    Article  PubMed  CAS  Google Scholar 

  25. Everts V, Delaisse JM, Korper W et al (2002) The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17:77–90. doi:10.1359/jbmr.2002.17.1.77

    Article  PubMed  CAS  Google Scholar 

  26. Delaisse JM, Eeckhout Y, Neff L et al (1993) (Pro)collagenase (matrix metalloproteinase-1) is present in rodent osteoclasts and in the underlying bone-resorbing compartment. J Cell Sci 106(Pt 4):1071–1082

    PubMed  CAS  Google Scholar 

  27. Delaisse JM, Eeckhout Y, Vaes G (1988) Bone-resorbing agents affect the production and distribution of procollagenase as well as the activity of collagenase in bone tissue. Endocrinology 123:264–276

    Article  PubMed  CAS  Google Scholar 

  28. Arguello F, Baggs RB, Frantz CN (1988) A murine model of experimental metastasis to bone and bone marrow. Cancer Res 48:6876–6881

    PubMed  CAS  Google Scholar 

  29. Pollard M, Luckert PH (1985) Effects of dichloromethylene diphosphonate on the osteolytic and osteoplastic effects of rat prostate adenocarcinoma cells. J Natl Cancer Inst 75:949–954

    PubMed  CAS  Google Scholar 

  30. Blackburn JS, Rhodes CH, Coon CI et al (2007) RNA interference inhibition of matrix metalloproteinase-1 prevents melanoma metastasis by reducing tumor collagenase activity and angiogenesis. Cancer Res 67:10849–10858. doi:10.1158/0008-5472.CAN-07-1791

    Article  PubMed  CAS  Google Scholar 

  31. Wyatt CA, Geoghegan JC, Brinckerhoff CE (2005) Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells: effects on matrix destruction and tumor growth. Cancer Res 65:11101–11108. doi:10.1158/0008-5472.CAN-05-2446

    Article  PubMed  CAS  Google Scholar 

  32. Jiang X, Dutton CM, Qi WN et al (2005) siRNA mediated inhibition of MMP-1 reduces invasive potential of a human chondrosarcoma cell line. J Cell Physiol 202:723–730. doi:10.1002/jcp.20162

    Article  PubMed  CAS  Google Scholar 

  33. Petrella BL, Brinckerhoff CE (2006) Tumor cell invasion of von Hippel Lindau renal cell carcinoma cells is mediated by membrane type-1 matrix metalloproteinase. Mol Cancer 5:66. doi:10.1186/1476-4598-5-66

    Article  PubMed  CAS  Google Scholar 

  34. Petrella BL, Lohi J, Brinckerhoff CE (2005) Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene 24:1043–1052. doi:10.1038/sj.onc.1208305

    Article  PubMed  CAS  Google Scholar 

  35. Meier F, Nesbit M, Hsu MY et al (2000) Human melanoma progression in skin reconstructs: biological significance of bFGF. Am J Pathol 156:193–200

    PubMed  CAS  Google Scholar 

  36. Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36:169–180. doi:10.1007/BF00666038

    Article  PubMed  CAS  Google Scholar 

  37. Benbow U, Schoenermark MP, Orndorff KA et al (1999) Human breast cancer cells activate procollagenase-1 and invade type I collagen: invasion is inhibited by all-trans retinoic acid. Clin Exp Metastasis 17:231–238. doi:10.1023/A:1006639214618

    Article  PubMed  CAS  Google Scholar 

  38. Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3:207–214. doi:10.1038/nrm763

    Article  PubMed  CAS  Google Scholar 

  39. Bridge AJ, Pebernard S, Ducraux A et al (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34:263–264. doi:10.1038/ng1173

    Article  PubMed  CAS  Google Scholar 

  40. Pebernard S, Iggo RD (2004) Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72:103–111. doi:10.1111/j.1432-0436.2004.07202001.x

    Article  PubMed  CAS  Google Scholar 

  41. Behrens P, Rothe M, Wellmann A et al (2001) The Ets-1 transcription factor is up-regulated together with MMP 1 and MMP 9 in the stroma of pre-invasive breast cancer. J Pathol 194:43–50. doi:10.1002/path.844

    Article  PubMed  CAS  Google Scholar 

  42. Gimbrone MA Jr, Leapman SB, Cotran RS et al (1972) Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136:261–276. doi:10.1084/jem.136.2.261

    Article  PubMed  Google Scholar 

  43. Gupta GP, Nguyen DX, Chiang AC et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770. doi:10.1038/nature05760

    Article  PubMed  CAS  Google Scholar 

  44. Saunders WB, Bayless KJ, Davis GE (2005) MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J Cell Sci 118:2325–2340. doi:10.1242/jcs.02360

    Article  PubMed  CAS  Google Scholar 

  45. Pozrikidis C, Farrow DA (2003) A model of fluid flow in solid tumors. Ann Biomed Eng 31:181–194. doi:10.1114/1.1540103

    Article  PubMed  CAS  Google Scholar 

  46. Benelli R, Albini A (1999) In vitro models of angiogenesis: the use of Matrigel. Int J Biol Markers 14:243–246

    PubMed  CAS  Google Scholar 

  47. Im E, Venkatakrishnan A, Kazlauskas A (2005) Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Mol Biol Cell 16:3488–3500. doi:10.1091/mbc.E04-11-1029

    Article  PubMed  CAS  Google Scholar 

  48. Goerge T, Barg A, Schnaeker EM et al (2006) Tumor-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation. Cancer Res 66:7766–7774. doi:10.1158/0008-5472.CAN-05-3897

    Article  PubMed  CAS  Google Scholar 

  49. Rodan GA (2003) The development and function of the skeleton and bone metastases. Cancer 97:726–732. doi:10.1002/cncr.11147

    Article  PubMed  Google Scholar 

  50. Hill PA, Docherty AJ, Bottomley KM et al (1995) Inhibition of bone resorption in vitro by selective inhibitors of gelatinase and collagenase. Biochem J 308(Pt 1):167–175

    PubMed  CAS  Google Scholar 

  51. Holliday LS, Welgus HG, Hanna J et al (2003) Interstitial collagenase activity stimulates the formation of actin rings and ruffled membranes in mouse marrow osteoclasts. Calcif Tissue Int 72:206–214. doi:10.1007/s00223-002-1008-7

    Article  PubMed  CAS  Google Scholar 

  52. Boyde A, Maconnachie E, Reid SA et al (1986) Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc 4:1537–1554

    Google Scholar 

  53. Taube T, Elomaa I, Blomqvist C et al (1994) Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone 15:161–166. doi:10.1016/8756-3282(94)90703-X

    Article  PubMed  CAS  Google Scholar 

  54. Cicek M, Oursler MJ (2006) Breast cancer bone metastasis and current small therapeutics. Cancer Metastasis Rev 25:635–644. doi:10.1007/s10555-006-9035-x

    Article  PubMed  CAS  Google Scholar 

  55. Garrett IR (1993) Bone destruction in cancer. Semin Oncol 20:4–9

    PubMed  CAS  Google Scholar 

  56. Yoneda T, Sasaki A, Mundy GR (1994) Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat 32:73–84. doi:10.1007/BF00666208

    Article  PubMed  CAS  Google Scholar 

  57. Okushiba S, Minagawa H, Shimizu M et al (2001) A case of spindle cell carcinoma of the breast—long survival achieved by multiple surgical treatment. Breast Cancer 8:238–242

    Article  PubMed  CAS  Google Scholar 

  58. Jiang Y, Xu W, Lu J et al (2001) Invasiveness of hepatocellular carcinoma cell lines: contribution of hepatocyte growth factor, c-met, and transcription factor Ets-1. Biochem Biophys Res Commun 286:1123–1130. doi:10.1006/bbrc.2001.5521

    Article  PubMed  CAS  Google Scholar 

  59. Kameyama K (1996) Expression of MMP-1 in the capsule of thyroid cancer—relationship with invasiveness. Pathol Res Pract 192:20–26

    PubMed  CAS  Google Scholar 

  60. Zeng ZZ, Jia Y, Hahn NJ et al (2006) Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells. Cancer Res 66:8091–8099. doi:10.1158/0008-5472.CAN-05-4400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to extend thanks to Dr. C. Harker Rhodes for IHC consultation and Dr. Steve Fiering for thoughtful ideas. Grant support: NIH grants AR26599 and CA77267 (C. E. Brinckerhoff) and NIH grant T32-CA009658 (S. M. Eck).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Brinckerhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eck, S.M., Hoopes, P.J., Petrella, B.L. et al. Matrix metalloproteinase-1 promotes breast cancer angiogenesis and osteolysis in a novel in vivo model. Breast Cancer Res Treat 116, 79–90 (2009). https://doi.org/10.1007/s10549-008-0085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0085-3

Keywords

Navigation