Skip to main content
Log in

Targeted cell adhesion on selectively micropatterned polymer arrays on a poly(dimethylsiloxane) surface

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Herein, we introduce the fabrication of polymer micropattern arrays on a chemically inert poly(dimethylsiloxane) (PDMS) surface and employ them for the selective adhesion of cells. To fabricate the micropattern arrays, a mercapto-ester—based photocurable adhesive was coated onto a mercaptosilane—coated PDMS surface and photopolymerized using a photomask to obtain patterned arrays at the microscale level. Robust polymer patterns, 380 µm in diameter, were successfully fabricated onto a PDMS surface, and cells were selectively targeted toward the patterned regions. Next, the performance of the cell adhesion was observed by anchoring cell adhesive linker, an RGD oligopeptide, on the surface of the mercapto-ester—based adhesive-cured layer. The successful anchoring of the RGD linker was confirmed through various surface characterizations such as water contact angle measurement, XPS analysis, FT-IR analysis, and AFM measurement. The micropatterning of a photocurable adhesive onto a PDMS surface can provide high structural rigidity, a highly–adhesive surface, and a physical pathway for selective cell adhesion, while the incorporated polymer micropattern arrays inside a PDMS microfluidic device can serve as a microfluidic platform for disease diagnoses and high-throughput drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • J.A. Barron, P. Wu, H.D. Ladouceur, B.R. Ringeisen, Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices 6, 139–147 (2004)

    Article  Google Scholar 

  • J.A. Burdick, A. Khademhosseini, R. Langer, Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20, 5153–5156 (2004)

    Article  Google Scholar 

  • V.J. Cadarso, A. Llobera, G. Villanueva, V. Seidemann, S. Büttgenbach, J.A. Plaza, Polymer microoptoelectromechanical systems: Accelerometers and variable optical attenuators, Sens. Actuator, A 145–146, 147–153 (2008)

    Article  Google Scholar 

  • S.C. Calaghan, E. White, S. Bedut, J.-Y. Le Guennec, Cytochalasin D reduces Ca2+ sensitivity and maximum tension via interactions with myofilaments in skinned rat cardiac myocytes. J. Physiol. 529(2), 405–411 (2000)

    Article  Google Scholar 

  • E. Cimetta, S. Pizzato, S. Bollini, E. Serena, P. De Coppi, N. Elvassore, Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomed. Microdevices 11, 389–400 (2009)

    Article  Google Scholar 

  • J. Fukuda, Y. Sakai, K. Nakazawa, Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials 27, 1061–1070 (2006)

    Article  Google Scholar 

  • M. Goto, T. Tsukahara, K. Sato, T. Kitamori, Micro- and nanometer-scale patterned surface in a microchannel for cell culture in microfluidic devices. Anal. Bioanal. Chem. 390, 817–823 (2008)

    Article  Google Scholar 

  • D.S. Gray, J. Tien, C.S. Chen, Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. 66A, 605–614 (2003)

    Article  Google Scholar 

  • Y. Ito, Surface micropatterning to regulate cell functions. Biomaterials 20, 2333–2342 (1999)

    Article  Google Scholar 

  • K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, T. Okano, Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns. Biomaterials 27, 3005–3009 (2006)

    Article  Google Scholar 

  • X. Jiang, S. Takayama, X. Qian, E. Ostuni, H. Wu, N. Bowden, P. LeDuc, D.E. Ingber, G.M. Whitesides, Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir 18, 3273–3280 (2002)

    Article  Google Scholar 

  • J.N. Lee, X. Jiang, D. Ryan, G.M. Whitesides, Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20, 11684–11691 (2004)

    Article  Google Scholar 

  • N.Y. Lee, J.R. Lim, Y.S. Kim, Selective patterning and immobilization of biomolecules within precisely-defined micro-reservoirs. Biosens. Bioelectron. 21, 2188–2193 (2006a)

    Article  Google Scholar 

  • N.Y. Lee, J.R. Lim, M.J. Lee, S. Park, Y.S. Kim, Multilayer transfer printing on microreservoir-patterned substrate employing hydrophilic composite mold for selective immobilization of biomolecules. Langmuir 22, 7689–7694 (2006b)

    Article  Google Scholar 

  • D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B.A. Imhof, M. Bastmeyer, Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J. Cell. Sci. 117, 41–52 (2004)

    Article  Google Scholar 

  • C.-M. Lo, H.-B. Wang, M. Dembo, Y.-L. Wang, Cell movement is guided by the rigidity of the substrate. Biophys J. 79, 144–152 (2000)

    Article  Google Scholar 

  • R. Lovchik, C. von Arx, A. Viviani, E. Delamarche, Cellular microarrays for use with capillary-driven microfluidics. Anal. Bioanal. Chem. 390, 801–808 (2008)

    Article  Google Scholar 

  • A. Mata, C. Boehm, A.J. Fleischman, G. Muschler, S. Roy, Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. J. Biomed. Mater. Res. 62, 499–506 (2002)

    Article  Google Scholar 

  • M. Ochsner, M.R. Dusseiller, H.M. Grandin, S. Luna-Morris, M. Textor, V. Vogel, M.L. Smith, Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab Chip 7, 1074–1077 (2007)

    Article  Google Scholar 

  • B. Pinto-Iguanero, A. Olivares-Pérez, I. Fuentes-Tapia, Holographic material film composed by Norland Noa 65 adhesive. Opt. Mater. 20, 225–232 (2002)

    Article  Google Scholar 

  • L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.-C. Voegel, C. Picart, Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules 5, 284–294 (2004)

    Article  Google Scholar 

  • S. Svedhem, D. Dahlborg, J. Ekeroth, J. Kelly, F. Höök, J. Gold, In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir 19, 6730–6736 (2003)

    Article  Google Scholar 

  • T. Tzvetkova-Chevolleau, A. Stéphanou, D. Fuard, J. Ohayon, P. Schiavone, P. Tracqui, The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29, 1541–1551 (2008)

    Article  Google Scholar 

  • S.Y.U. Venyaminov, N.N. Kalnin, Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption band. Biopolymers 30, 1243–1257 (1990)

    Article  Google Scholar 

  • K. Yamauchi, H. Hojo, Y. Yamamoto, T. Tanabe, Enhanced cell adhesion on RGDS-carrying keratin film. Mat. Sci. Eng. C 23, 467–472 (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the GRRC program of Gyeonggi province (GRRC Kyungwon 2009-A01, Development of Microfluidic Devices for the Diagnosis of Disease) and the Kyungwon University Research Fund in 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nae Yoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Min, J., Lee, EC. et al. Targeted cell adhesion on selectively micropatterned polymer arrays on a poly(dimethylsiloxane) surface. Biomed Microdevices 12, 13–21 (2010). https://doi.org/10.1007/s10544-009-9353-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9353-1

Keywords

Navigation