Skip to main content
Log in

A comparison of whole cell directed evolution approaches in breeding of industrial strain of Saccharomyces cerevisiae

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

To reduce the fermentation cost in very high gravity fermentations of ethanol using Saccharomyces cerevisiae, whole cell directed evolution approaches were carried out.

Results

The methods used included cell ploidy manipulation, global transcription machinery engineering and genome shuffling. Ethanol production by the four methods was improved compared with the control. Notably, the ethanol yield of a strain constructed by genome shuffling was enhanced by up to 11 % more than the control reaching 120 g ethanol/l in 35 h using a very high gravity fermentation with 300 g glucose/l.

Conclusion

Genome shuffling can create strains with improved fermentation characteristics in very high gravity fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alper H (2006) Development of systematic and combinatorial approaches for the metabolic engineering of microorganisms. PhD Thesis, Massachusetts Institute of Technology, pp 21–34

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Bhaumik SR, Green MR (2002) Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol Cell Biol 22:7365–7371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bidenne C, Blondin B, Dequin S, Vezinhet F (1992) Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet 22: l–7

  • Cao LM, Zhang AL, Kong QX, Xu X, Josine T, Chen X (2007) Overexpression of GLT1 in fps1△gpd△ mutant for optimum ethanol formation by Saccharomyces cerevisiae. Biomol Eng 24:638–642

    Article  CAS  PubMed  Google Scholar 

  • Devantier R, Scheithauer B, Granato VS, Pedersen S, Olsson L (2005) Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol Bioeng 90:703–714

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Zheng H, Wu Z, Chen T, Zhao X (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27:996–1005

    Article  PubMed  Google Scholar 

  • Hou LH (2009) Novel methods of genome shuffling used in Saccharomyces cerevisiae. Biotechnol Lett 31:671–677

    Article  CAS  PubMed  Google Scholar 

  • Hou LH (2010) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:1084–1093

    Article  CAS  PubMed  Google Scholar 

  • Hou LH, Cao XH, Wang CL, Lu MF (2009) Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains. Lett Appl Microbiol 49:14–19

    Article  PubMed  Google Scholar 

  • Hou LH, Cao XH, Wang CL (2010) A novel approach for the improvement of ethanol fermentation by Saccharomyces cerevisiae. Can J Microbiol 56:1–6

    Article  Google Scholar 

  • Kong QX, Cao LM, Zhang AL, Chen X (2007) Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73:1382–1386

    Article  CAS  PubMed  Google Scholar 

  • Lee TI, Causton HC, Holstege FC, Shen WC, Hannett N, Jennings EG, Winston F, Green MR, Young RA (2000) Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405:701–704

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  PubMed  Google Scholar 

  • Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21:231–241

    Article  CAS  PubMed  Google Scholar 

  • Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474

    Article  CAS  PubMed  Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mole Biol Rev 64:34–50

    Article  CAS  Google Scholar 

  • Patnaik R (2008) Engineering complex phenotypes in industrial strains. Biotechnol Progr 24:38–47

    Article  CAS  Google Scholar 

  • Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  PubMed  Google Scholar 

  • Rautio JJ, Huuskonen A, Vuokko H, Vidgren V, Londesborough J (2007) Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast 24:741–760

    Article  CAS  PubMed  Google Scholar 

  • Salmon JM (1997) Enological fermentation kinetics of an isogenic ploidy series derived from an industrial Saccharomyces cerevisiae strain. J Ferment Bioeng 83:253–260

    Article  CAS  Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as carrier. Curr Genet 16:339–346

    Article  CAS  PubMed  Google Scholar 

  • Tamás MJ, Karlgren S, Bill RM, Hedfalk K, Allegri L, Ferreira M, Thevelein JM, Rydström J, Mullins JG, Hohmann S (2003) A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biol Chem 278:6337–6345

    Article  PubMed  Google Scholar 

  • Teixeira MC, Godinho CP, Cabrito TR, Mira NP, Sá-Correia I (2012) Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Microb Cell Fact 11:28

    Article  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang AL, Kong QX, Cao LM, Chen X (2007) Effect of FPS1 deletion on the fermentation properties of Saccharomyces cerevisiae. Lett Appl Microbiol 44:212–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (31371819) and the projects (2012AA022108, 2013AA102106, 2012BAD33B04 and IRT1166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-hua Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Lh., Meng, M., Guo, L. et al. A comparison of whole cell directed evolution approaches in breeding of industrial strain of Saccharomyces cerevisiae . Biotechnol Lett 37, 1393–1398 (2015). https://doi.org/10.1007/s10529-015-1812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1812-6

Keywords

Navigation