Skip to main content

Advertisement

Log in

Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Dietary restriction (DR) lowers mitochondrial reactive oxygen species (ROS) generation and oxidative damage and increases maximum longevity in rodents. Protein restriction (PR) or methionine restriction (MetR), but not lipid or carbohydrate restriction, also cause those kinds of changes. However, previous experiments of MetR were performed only at 80% MetR, and substituting dietary methionine with glutamate in the diet. In order to clarify if MetR can be responsible for the lowered ROS production and oxidative stress induced by standard (40%) DR, Wistar rats were subjected to 40% or 80% MetR without changing other dietary components. It was found that both 40% and 80% MetR decrease mitochondrial ROS generation and percent free radical leak in rat liver mitochondria, similarly to what has been previously observed in 40% PR and 40% DR. The concentration of complexes I and III, apoptosis inducing factor, oxidative damage to mitochondrial DNA, five different markers of protein oxidation, glycoxidation or lipoxidation and fatty acid unsaturation were also lowered. The results show that 40% isocaloric MetR is enough to decrease ROS production and oxidative stress in rat liver. This suggests that the lowered intake of methionine is responsible for the decrease in oxidative stress observed in DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis inducing factor

AASA:

Aminoadipic semialdehyde in proteins

CEL:

Carboxyethyl-lysine in proteins

CML:

Carboxymethyl-lysine in proteins

DBI:

Double bond index

DR:

Dietary restriction

PI:

Peroxidizability index

PR:

Protein restriction

GSA:

Glutamic semialdehyde in proteins

MDAL:

Malondialdehyde-lysine in proteins

MetR:

Methionine restriction

ROS:

Reactive oxygen species

8-oxodG:

8-Oxo-7,8-dihydro-2′deoxyguanosine

References

  • Asunción JG, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Viña J (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10:333–338

    PubMed  Google Scholar 

  • Ayala V, Naudi A, Sanz A, Caro P, Portero-Otin M, Barja G, Pamplona R (2007) Dietary protein restriction decreases oxidative protein damage, peroxidizability index, and mitochondrial complex I content in rat liver. J Gerontol A Biol Sci Med Sci 62:352–360

    Article  PubMed  Google Scholar 

  • Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34:227–233

    Article  CAS  PubMed  Google Scholar 

  • Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600

    Article  CAS  PubMed  Google Scholar 

  • Barja G, Herrero A (1998) Localization at complex I and mechanism of the higher free radical production of brain non-synaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30:235–243

    Article  CAS  PubMed  Google Scholar 

  • Beckman KB, Ames B (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Boveris A, Cadenas E, Stoppani OM (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:0479–0487

    Article  CAS  Google Scholar 

  • Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behaviour and aging specified by mitochondrial function during development. Science 298:2398–2401

    Article  CAS  PubMed  Google Scholar 

  • Drögue W (2001) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  Google Scholar 

  • Durand P, Prost M, Loreau N, Lussier-Cacan S, Blacke D (2001) Impaired homocysteine metabolism and atherothrombotic disease. Lab Invest 81:645–672

    Article  CAS  PubMed  Google Scholar 

  • Genova ML, Ventura B, Giulano G, Bovina C, Formiqqini G, Parenti Castelli G, Lenaz G (2001) The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulphur cluster N2. FEBS Lett 505:364–368

    Article  CAS  PubMed  Google Scholar 

  • Gómez J, Caro P, Naudí A, Portero-Otin M, Pamplona R, Barja G (2007) Effect of 8.5% and 25% caloric restriction on mitochondrial free radical production and oxidative stress in rat liver. Biogerontology 8:555–566

    Article  PubMed  Google Scholar 

  • Gredilla R, Barja G (2005) Caloric restriction, aging and oxidative stress. Endocrinology 146:3713–3717

    Article  CAS  PubMed  Google Scholar 

  • Gredilla R, Sanz A, López-Torres M, Barja G (2001a) Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J 15:1589–1591

    CAS  PubMed  Google Scholar 

  • Gredilla R, Barja G, López-Torres M (2001b) Effect of short-term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria, and location of the free radical source. J Bioenerg Biomembr 33:279–287

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition and life span of animals. Physiol Rev 87:1175–1213. doi: 10.1152/physrev.00047.2006

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki K, Gleiser CA, Masoro EJ, Mcmahan CA, Seo EJ, Yu BP (1988) Influence of the restriction of individual dietary components on longevity and age-related disease of Fisher rats: the fat component and the mineral component. J Gerontol 43:B13–B21

    Article  CAS  PubMed  Google Scholar 

  • Khorakova M, Deil Z, Khausman Dzh, Matsek K (1990) Effect of carbohydrate-enriched diet and subsequent food restriction on life prolongation in Fischer 344 male rats. Fiziol Zh 36:16–21

    CAS  PubMed  Google Scholar 

  • Komninou D, Leutzinger Y, Reddy BS, Richie JP (2006) Methionine restriction inhibits colon carcinogenesis. Nutr Cancer 54:202–208

    Article  CAS  PubMed  Google Scholar 

  • Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926

    CAS  PubMed  Google Scholar 

  • Kruman II, Kumaravel TS, Lohani A, Pedersen WA, Cutler RG, Kruman Y, Haughey N, Lee J, Evans M, Mattson MP (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 22:1752–1762

    CAS  PubMed  Google Scholar 

  • Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6:607–618

    Article  CAS  PubMed  Google Scholar 

  • Latorre A, Moya A, Ayala A (1986) Evolution of mitochondrial DNA in Drosophila subobscura. Proc Natl Acad Sci USA 83:8649–8653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48

    Article  CAS  PubMed  Google Scholar 

  • Loft S, Poulsen HE (1999) Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods Enzymol 300:166–184

    Article  CAS  PubMed  Google Scholar 

  • Mair W, Piper MDW, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:1305–1311

    Article  CAS  Google Scholar 

  • Malloy VL, Krajcik RA, Bailey SJ, Hristopoulos G, Plummer JD, Orentreich N (2006) Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell 5:305–314

    Article  CAS  PubMed  Google Scholar 

  • Masoro EJ, Iwasaki K, Gleiser CA, McMahan CA, Seo EJ, Yu BP (1989) Dietary modulation of the progression of nephropathy in aging rats: an evaluation of the importance of protein. Am J Clin Nutr 49:217–227

    Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  CAS  PubMed  Google Scholar 

  • Min KJ, Tatar M (2006) Restriction of aminoacids extends life span in Drosophila melanogaster. Mech Ageing Dev 127:643–646

    Article  CAS  PubMed  Google Scholar 

  • Mori N, Hirayama K (2000) Long-term consumption of a methionine-supplemented diet increases iron and lipid peroxide levels in rat liver. J Nutr 130:2349–2355

    CAS  PubMed  Google Scholar 

  • Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Tanak K, Okubo K, Nakamura H, Hata J, Oishi Y, Kato I, Hirakata H, Lida M (2004) Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. Am J Kidney Dis 44:437–445

    Article  PubMed  Google Scholar 

  • Pamplona R, Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 1757:496–508

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R, Portero-Otín M, Requena J, Gredilla R, Barja G (2002a) Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after four months of caloric restriction than in age-matched controls. Mech Ageing Dev 123:1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R, Portero-Otín M, Bellmunt MJ, Gredilla R, Barja G (2002b) Aging increases Nepsilon-(carboxymethyl)lysine and caloric restriction decreases Nepsilon-(carboxyethyl)lysine and nepsilon-(malondialdehyde)lysine in rat heart mitochondrial proteins. Free Radic Res 36:47–54

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R, Barja G, Portero-Otín M (2002c) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation. Ann N Y Acad Sci 959:475–490

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R, Dalfo E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otin M (2005) Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. J Biol Chem 280:21522–21530

    Article  CAS  PubMed  Google Scholar 

  • Pavillard V, Nicolaou A, Double JA, Philips RM (2006) Methionine dependence of tumours: a biochemical strategy for optimizing paclitaxel chemosensitivity in vitro. Biochem Pharmacol 71:772–778

    Article  CAS  PubMed  Google Scholar 

  • Porter AG, Urbano GL (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioessays 28:834–843

    Article  CAS  PubMed  Google Scholar 

  • Regina M, Korhonen VP, Smith TK, Alakuijala L, Eloranta TO (1993) Methionine toxicity in relation to hepatic accumulation of S-adenosylmethionine: prevention by dietary stimulation of the hepatic transsulfuration pathway. Arch Biochem Biophys 300:598–607

    Article  CAS  PubMed  Google Scholar 

  • Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J 8:1302–1307

    CAS  PubMed  Google Scholar 

  • Robert KA, Brunet-Rossinni A, Bronikowski AM (2007) Testing the “free radical theory of aging” hypothesis: physiological differences in long-lived and short-lived colubrid snakes. Aging Cell 6:395–404

    Article  CAS  PubMed  Google Scholar 

  • Sanz A, Barja G (2006) Estimation of the rate of production of oxygen radicals by mitochondria. In: Conn M (ed) Handbook of models for human aging. Academic, New York, pp 183–189

    Chapter  Google Scholar 

  • Sanz A, Caro P, Barja G (2004) Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J Bioenerg Biomembr 36:545–552

    Article  CAS  PubMed  Google Scholar 

  • Sanz A, Caro P, Gómez J, Barja G (2006a) Effect of Lipid Restriction on mitochondrial free radical production and oxidative DNA damage. Ann N Y Acad Sci 1067:200–209

    Article  CAS  PubMed  Google Scholar 

  • Sanz A, Gómez J, Caro P, Barja G (2006b) Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr 38:327–333

    Article  CAS  PubMed  Google Scholar 

  • Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006c) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20:1064–1073

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa I, Higami Y, Yu BP, Masoro EJ, Ikeda T (1996) Influence of dietary components on occurrence of and mortality due to neoplasms in male F344 rats. Aging Clin Exp Res 8:254–262

    Article  CAS  Google Scholar 

  • Stefanello FM, Chiarani F, Kurek AG, Wannmacher CM, Wajner M, Wyse AT (2005) Methionine alters Na+,K+-ATPase, lipid peroxidation and non-enzymatic antioxidant defenses in rat hippocampus. Int J Dev Neurosci 23:651–656

    Article  CAS  PubMed  Google Scholar 

  • Stubbs AK, Wheelhouse NM, Lomax MA, Hazlerigg DG (2002) Nutrient–hormnone interaction in the ovine liver: methionine supply selectively modulates growth hormone-induced IGF-I gene expression. J Endocrinol 174:335–341

    Article  CAS  PubMed  Google Scholar 

  • Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278:19603–19610

    Article  CAS  PubMed  Google Scholar 

  • Troen AM, French EE, Roberts JF, Selhub J, Ordovas JM, Parnell LD, Lain CQ (2007) Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet. Age 29:29–39

    Article  CAS  PubMed  Google Scholar 

  • Vahsen N, Candé C, Brière JJ, Bénit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velez-Carrasco W, Merkel M, Twiss CO, Smith JD (2008) Dietary methionine effects on plasma homocysteine and HDL metabolism in mice. J Nutr Biochem [Aug 16, Epub ahead of print]

  • Verhoef P, van Vliet T, Olthof MR, Katan MB (2005) A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: a dietary controlled crossover trial in healthy volunteers. Am J Clin Nutr 82:553–558

    CAS  PubMed  Google Scholar 

  • Weindruch R (2003) Caloric restriction: life span extension and retardation of brain aging. Clin Neurosci Res 2:279–284

    Article  Google Scholar 

  • Zimmerman JA, Malloy V, Krajcik R, Orentreich N (2003) Nutritional control of aging. Exp Gerontol 38:47–52

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by I + D grants from the Spanish Ministry of Education and Science (BFU2006-14495/BFI), the Spanish Ministry of Health (ISCIII, Red de Envejecimiento y Fragilidad, RD06/0013/0012), the Generalitat of Catalunya (2005SGR00101) and “La Caixa” Foundation to R. Pamplona; and from the Ministry of Education and Science (BFU2005-02584) and from CAM/UCM groups (910521) to G. Barja; A. Naudi received a predoctoral fellowship from “La Caixa” Foundation. P. Caro and J. Gómez received predoctoral fellowships from the Ministry of Education and Science. We thank David Argiles for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caro, P., Gómez, J., López-Torres, M. et al. Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 9, 183–196 (2008). https://doi.org/10.1007/s10522-008-9130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9130-1

Keywords

Navigation