Skip to main content
Log in

Contribution of \( {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} \) and 13CTDIC Evaluation to the Identification of CO2 Sources in Volcanic Groundwater Systems: Influence of Hydrometeorological Conditions and Lava Flow Morphologies—Application to the Argnat Basin (Chaîne des Puys, Massif Central, France)

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Mineralization of groundwater in volcanic aquifers is partly acquired through silicates weathering. This alteration depends on the dissolution of atmospheric, biogenic, or mantellic gaseous CO2 whose contributions may depend on substratum geology, surface features, and lava flow hydrological functionings. Investigations of \( {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} \) and δ13CTDIC (total dissolved inorganic carbon) on various spatiotemporal scales in the unsaturated and saturated zones of volcanic flows of the Argnat basin (French Massif Central) have been carried out to identify the carbon sources in the system. Mantellic sources are related to faults promoting CO2 uplift from the mantle to the saturated zone. The contribution of this source is counterbalanced by infiltration of water through the unsaturated zone, accompanied by dissolution of soil CO2 or even atmospheric CO2 during cold periods. Monitoring and modeling of δ13CTDIC in the unsaturated zone shows that both \( {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} \) and δ13CTDIC are controlled by air temperature which influences soil respiration and soil-atmosphere CO2 exchanges. The internal geometry of volcanic lava flows controls water patterns from the unsaturated zone to saturated zone and thus may explain δ13C heterogeneity in the saturated zone at the basin scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abril G, Etxheber H, Borges AV, Frankignoulle M (2000) Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary. C R Acad Sci Paris, Sciences de la Terre et des planètes/Earth Planet Sci 330:761–768

    Google Scholar 

  • Alley WM (1993) Regional ground-water quality. Van Nostrand Reinhold, New York, p 634

    Google Scholar 

  • Amiotte-Suchet P, Probst JL (1993) Modelling of atmospheric CO2 consumption by chemical weathering of rocks: application to the Garonne, Congo and Amazon basins. Chem Geol 107:205–210

    Article  Google Scholar 

  • Amiotte-Suchet P, Probst JL (1995) A global model for present day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus 47B:273–280

    Google Scholar 

  • Amiotte-Suchet P, Aubert D, Probst JL, Gauthier-Lafaye F, Probst A, Andreux F, Viville D (1999) δ13C pattern of dissolved inorganic carbon in a small granitic catchment : the Strengbach case study Vosges mountains, France. Chem Geol 159:129–145

    Article  Google Scholar 

  • Amiotte-Suchet P, Probst JL, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem. Cycles 17 doi:10.1029/2002GB001891 (electronic version)

  • Amundson R, Stern L, Baisden T, Wang Y (1998) The isotopic composition of soil and soil-respired CO2. Geoderma 82:83–114

    Article  Google Scholar 

  • Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution. Balkema AA (ed), Rotterdam, p 536

  • Aubignat A (1973) Le gisement hydrominéral de Volvic en Auvergne [The hydromineral source of Volvic in Auvergne]. Rev Sci Nat Auvergne 39:40–68

    Google Scholar 

  • Barbaud JY (1983) Etude chimique et isotopique des aquifères du Nord de la Chaîne des Puys. Temps de transit et vulnérabilité des systèmes de Volvic et d’Argnat. PhD thesis, Université d’Avignon, p 209

  • Batard F, Baudron JC, Bosh B, Marce A, Risler JJ (1982) Isotopic identification of gases of a deep origin in French thermomineral waters. J Hydrol 56:1–21

    Article  Google Scholar 

  • Batiot C (2002) Etude expérimentale du cycle du carbone en regions karstiques. Apport du carbone organique et du carbone minéral à la connaissance hydrogéologique des systèmes. Site expérimental de Vaucluse, Jura, Larzac, région nord-montpelliéraine, Nerja (Espagne) [Experimental study of the carbon cycle in karstic areas. Contribution of organic and mineral carbons for the hydrogeological understanding of the systems. Experimental sites of Vaucluse, Jura, Larzac, Montpellier’s north area, Nerja (Spain)], PhD thesis, Université d’Avignon et des Pays de Vaucluse, p 247

  • Baynes J, Dearman WR (1978) The microfabric of a chemically weathered granite. Bull Eng Geol Environ 18:91–100. doi:10.1007/BF02635354

    Google Scholar 

  • Belin JM, Livet M, Heraud H (1988) Autoroute Périgueux Clermont-Ferrand. Dossier d’étude préliminaire de la Chaîne des Puys [Périgueux Clermont-Ferrand Motorway. Preliminary study of the Chaîne des Puys], Ministère de l’équipement et du Logement, CETE Lyon, laboratoire régional de Clermont-Ferrand

  • Benedetti MF, Menard O, Noack Y, Carvalho A, Nahon D (1994) Water-rock interactions in tropical catchments: field rates of weathering and biomass impact. Chem Geol 118:203–220

    Article  Google Scholar 

  • Berthelin J (1988) Microbial weathering processes in natural environments. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles. Kluwer, Dordrecht

    Google Scholar 

  • Bertrand G (2009) De la pluie à l’eau souterraine. Apport du traçage naturel (ions majeurs, isotopes) à l’étude du fonctionnement des aquifères volcaniques. (Bassin d’Argnat, Auvergne, France) [From rain to groundwater. Contribution of natural tracers (major ions, isotopes) for the study of volcanic aquifer functiuning (Argnat basin, Auvergne, France)]. PhD thesis, University Blaise Pascal Clermont-Ferrand 2, 294 p. Available on: http://tel.archives-ouvertes.fr/docs/00/55/69/10/PDF/25042009_these_GBERTRAND.pdf. Accessed the 05-02-2012

  • Bertrand G, Celle-Jeanton H, Huneau F, Loock S, Rénac C (2010) Identification of different groundwater flowpaths within volcanic aquifers using natural tracers: influence of lava flows morphology. (Argnat basin, Chaîne des Puys, France). J Hydrol 391:223–234

    Article  Google Scholar 

  • Bertrand G, Goldscheider N, Gobat JM, Hunkeler D (2012a) Review: from multi-scale conceptualization of groundwater-dependent ecosystems to a classification system for management purposes. Hydrogeol J 20:5–25

    Article  Google Scholar 

  • Bertrand G, Masini J, Goldscheider N, Meeks J, Lavastre V, Celle-Jeanton H, Gobat JM, Hunkeler D (2012b) Determination of spatio-temporal variability of tree water uptake using stable isotopes (δ18O; δ2H) in an alluvial system supplied by a high-altitude watershed, Pfyn Forest, Switzerland. Ecohydrology, online. doi:10.1002/eco.1347

  • Bleak AT (1970) Disappearance of plant material under a winter snow cover. Ecology 51:915–917

    Article  Google Scholar 

  • Bluth GJS, Kump LR (1994) Lithologic and climatic control of river chemistry. Geochim Cosmochim Acta 58:2341–2359

    Article  Google Scholar 

  • Boivin P, Besson JC, Briot D, Camus G, De Goër De Herve A, Gourgaud A, Labazuy P, De Larouzière FD, Livet M, Mergoil J, Miallier D, Morel JM, Vernet G, Vincent PM (2009) Volcanologie de la Chaîne des Puys, Massif Central Français [Volcanology of the Chaîne des Puys], 5th édn, Editions du parc naturel régional des volcans d’Auvergne

  • Bottinga Y (1968) Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. J Phys Chem 72:800–818

    Article  Google Scholar 

  • Brady PV, Dorn RI, Brazel AJ, Clark J, Moore RB, Glidewell T (1999) Direct measurement of the combined effects of lichen, rainfall and temperature on silicate weathering. Geochim Cosmochim Acta 63:3293–3300

    Article  Google Scholar 

  • Bréhérét JG, Fourmont A, Macaire JJ, Negrel P (2008) Microbially mediated carbonates in the Holocene deposits from Sarliève, a small ancient lake of the French Massif Central, testify to the evolution of a restricted environment. Sedimentology 55:557–578

    Article  Google Scholar 

  • Camus G, Michard GPO, Boivin P (1993) Risque d’éruption gazeuse carbonique en Auvergne [Gaseous carbon eruption risk in Auvergne]. Bull Soc Géol France 164(6):767–781

    Google Scholar 

  • Carrillo-Rivera JJ, Varsányi I, Kovács L, Cardona A (2007) Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments. Water Air Soil Pollut 184:77–103

    Article  Google Scholar 

  • Cerling TE, Solomon DK, Quade J, Borman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405

    Article  Google Scholar 

  • Charlier JB, Lachassagne P, Ladouche B, Cattan P, Moussa R, Voltz M (2011) Structure and hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: a multi-disciplinary experimental approach. J Hydrol 398:155–170

    Article  Google Scholar 

  • Chiodini G, Frondini F, Kerrick DM, Rogie J, Parello F, Peruzzi L, Zanzari AR (1999) Quantification of deep CO fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem Geol 159:205–222

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York, p 328

    Google Scholar 

  • Coxon DS, Parkinson D (1987) Winter respiratory activity in aspen woodland forest floor litter and soils. Soil Biol Biochem 19:49–59

    Article  Google Scholar 

  • Cruz JV, Amaral CS (2004) Major ion chemistry of groundwater from perched-water bodies of the Azores (Portugal) volcanic archipelago. Appl Geochem 19:445–459

    Article  Google Scholar 

  • Cruz JV, Franca Z (2006) Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal). J Volcanol Geoth Res 151:382–398

    Article  Google Scholar 

  • Dafny E, Burg A, Gvirtzman H (2006) Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: the Golan Heights, Israel case study. J Hydrol 330:506–524

    Article  Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 1. Elsevier, New York, pp 329–406

    Google Scholar 

  • Deines P, Langmuir D, Harmon RS (1974) Stable isotope ratios and the existence of a gas phase in the evolution of carbonate groundwaters. Geochim Cosmochim Acta 38:1147–1154

    Article  Google Scholar 

  • Demlie M, Wohnlich S, Ayenew T (2008) Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia. J Hydrol 353:175–188

    Article  Google Scholar 

  • Dessert C, Dupré B, Francois LM, Schott J, Gaillardet J, Chakrapani GJ, Bajpai S (2001) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet Sci Lett 188:459–474

    Article  Google Scholar 

  • Dessert C, Dupré B, Gaillardet J, Francois LM, Allegre CJ (2003) Basalt weathering laws and impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273

    Article  Google Scholar 

  • Dever ML(1985) Approaches chimiques et isotopiques des interactions fluide-matrice en zone non saturée carbonatée [Chemical and isotopic approaches of fluid-matrix interaction in carbonate saturated zone]. PhD thesis, Université Paris XI, p 196

  • D’Ozouville N, Auken E, Sorensen K, Violette S, De Marsily G, Deffontaines B, Merlen G (2008) Extensive perched aquifer and structural implications revealed by 3D resistivity mapping in a Galapagos volcano. Earth Planet Sci Lett 269:518–522

    Article  Google Scholar 

  • Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332

    Article  Google Scholar 

  • Druraiswami RA, Bondre NR, Managrave S (2008) Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: implications for style of emplacement. J Volcanol Geoth Res 177:822–836

    Article  Google Scholar 

  • Dudziak A, Halas S (1996) Influence of freezing and thawing on the carbon isotope composition in soil CO2. Geoderma 69:209–216

    Article  Google Scholar 

  • Edmond JM, Palmer MR, Measures CI, Grant B, Stallard RF (1995) The fluvial geochemistry and denudation rate of the Guyana Shield in Venezuela, Colombia, and Brazil. Geochim Cosmochim Acta 59:3301–3325

    Article  Google Scholar 

  • Emblanch C (1997) Les équilibres chimiques et isotopiques du carbone dans les aquifères karstiques: étude en région méditerranéenne de montagne [Chemical and isotopic equilibria of carbon in karstic aquifer: study in mountainous Mediterranean area] PhD thesis, Université d’Avignon et des Pays du Vaucluse, p 184

  • Emblanch C, Zuppi GM, Mudry J, Blavoux B, Batiot C (2003) Carbon 13 of TDIC to quantify the role of the unsaturated zone: the example of the Vaucluse karst systems (Southeastern France). J Hydrol 279(1–4):262–274

    Article  Google Scholar 

  • European Union Groundwater Directive (2006/118/EC), 2006 Available on: http://ec.europa.eu/environment/water/water-framework/groundwater/policy/current_framework/new_directive_en.htm. Accessed the 05-02-2012

  • Federico C, Aiuppa A, Allard P, Bellomo S, Jean-Baptiste P, Parello F, Valenza M (2002) Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt Vesuvius, Italy. Geochim Cosmochim Acta 66:963–981

    Article  Google Scholar 

  • Freeze AR, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, USA, p 604

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  • Gal F, Gadalia A (2011) Soil gas measurements around the most recent volcanic system of metropolitan France (Lake Pavin, Massif Central). C R Geosci 343:43–54

    Article  Google Scholar 

  • Garrels RM, Mackenzie F (1971) Evolution of Sedimentary Rocks. Norton, New York

    Google Scholar 

  • Gislason SR, Arnorsson S, Armannsson H (1996) Chemical weathering of basalt as deduced from the composition of precipitation, rivers and rocks in SW Iceland: effect of runoff, age of rocks and vegetative/glacial cover. Am J Sci 296:837–907

    Article  Google Scholar 

  • Hinsinger P, Barros ON, Benedetti MF, Noack Y, Callot G (2001) Plant-induced weathering of a basaltic rocks: experimental evidence. Geochim Cosmochim Acta 65:137–152

    Article  Google Scholar 

  • Hori M, Hoshino K, Okumura K, Kano A (2008) Seasonal patterns of carbon chemistry and isotopes in tufa depositing groundwaters of southwestern Japan. Geochim Cosmochim Acta 72:480–492

    Article  Google Scholar 

  • Hottin AM, Camus G, Michaeli B, Marchand J, Perichaud J, D’Arcy D (1989) Notice explicative, carte geol. France (1/50000), feuille Pontgibaud (692) [Explicative notice, geological map France (1/50000), sheet of Pontgibaud (692)] Orléans, BRGM, p 103

  • Jiráková H, Huneau F, Hrkal Z, Celle-Jeanton H, Le Coustumer P (2010) Carbone isotopes to constrain the origin and circulation pattern of groundwater in the north-western part of the Bohemian Cretaceous Basin (Czech Republic). Appl Geochem 25:1265–1279

    Article  Google Scholar 

  • Josnin JY, Livet M, Besson JC (2007) Characterizing unsaturated flow from packed scoriated lapilli: application to Strombolian cone hydrodynamic behaviour. J Hydrol 335:225–239

    Article  Google Scholar 

  • Joux M (2002) Structure et fonctionnement hydrogéologique du système aquifère volcanique des eaux minérales de Volvic (Chaîne des Puys, Massif Central Français) [Structure and hydrogeological functiuning of mineral waters of Volvic (Chaîne des Puys, French Massif Central)] PhD thesis, Université d’Avignon et des Pays du Vaucluse, p 227

  • Karakaya N, Karakaya MC, Nalbantçılar MT, Yavuz F (2007) Relation between spring-water chemistry and hydrothermal alteration in the Şaplıca volcanic rocks, Şebinkarahisar (Giresun, Turkey). J Geochem Explor 93:35–46

    Article  Google Scholar 

  • Karberg NJ, Pregitzer ÆKS, King ÆJS, Friend AL, Wood ÆJR (2005) Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142:296–306

    Article  Google Scholar 

  • Kiernan K, Wood C, Middleton G (2003) Aquifer structure and contamination risk in lava flows: insights from Iceland and Australia. Environ Geol 43:852–865

    Google Scholar 

  • Kløve B, Ala-aho P, Allan A, Bertrand G, Druzynska E, Ertürk A, Goldscheider N, Henry S, Karakaya N, Karjalainen TP, Koundouri P, Kværner J, Lundberg A, Muotka T, Preda E, Pulido Velázquez M, Schipper P (2011) Groundwater Dependent Ecosystems: part II—ecosystem services and management under risk of climate Change and Land-Use Management. Environ Sci Policy 14:782–793

    Article  Google Scholar 

  • Korzhinskii DS (1959) Physicochemical basis of the analysis of the paragenesis of minerals (translation). Consultant Bureau, New York, p 143

    Google Scholar 

  • Kroopnick PM, Deuser WG, Graig H (1970) Carbon-13 measurements on dissolved inorganic carbon in the North Pacific _1969. GEOSECS station. J Geophys Res 75:7668–7671

    Article  Google Scholar 

  • Kulkarni H, Deolankar SB, Lalwani A (2000) Hydrogeological framework of the Deccan basalt groundwater systems, west-central India. Hydrogeol J 8:368–378

    Article  Google Scholar 

  • Lavina P, Del Rosso d’Hers T (2008) Le complexe volcanique Montchal-Pavin-Montcynère: nouvelles stratigraphie, tephrochronologie et datations, vers une nouvelle réévaluation de l’aléa volcano-tectonique en Auvergne [The volcanic complex of montchal-Pacin-Montcynère: new stratigraphy, tephrochronology and datations, toward a new evaluation of the volcano-tectonic alea in Auvergne]. XXIIème Réunion des Sciences de la Terre, Nancy, April 2008

  • Levin I, Graul R, Trivett NBA (1995) Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B:23–34

    Google Scholar 

  • Liu Z, Li Q, Sun H, Wang J (2007) Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China:soil CO2 and dilution effects. J Hydrol 337:207–223

    Article  Google Scholar 

  • Livet M, D’Arcy A, Dupuy C (2006) Synthèse hydrogéologique de l’Auvergne [Hydrogeological synthesis of Auvergne]. In ‘‘Aquifères et eaux souterraines en France’’[Aquifers and groundwaters in France], Ed. BRGM, p 956

  • Lloret E, Dessert C, Gaillardet J, Albéric P, Crispi O, Chaduteau C, Benedetti MF (2011) Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). Chem Geol 280:65–78

    Article  Google Scholar 

  • Lohila A, Aurela M, Regina K, Tuovinen JP, Laurila T (2007) Wintertime CO2 exchange in a boreal agricultural peat soil. Tellus 59B:860–873

    Google Scholar 

  • Louvat P, Allègre CJ (1997) Present denudation rates at Réunion island determined by river geochemistry: basalt weathering and mass budget between chemical and mechanical erosions. Geochim Cosmochim Acta 61:3645–3669

    Article  Google Scholar 

  • MacDonald GA (1953) Pahoehoe, a’a and block lava. Am J Sci 251:169–191

    Article  Google Scholar 

  • Martin-Del Pozzo A, Aceves F, Espinasa R, Aguayo A, Inguaggiato S, Morales P, Cienfuegos E (2002) Influence of volcanic activity on spring water chemistry at Popocatepetl volcano, Mexico. Chem Geol 190:207–229

    Article  Google Scholar 

  • Matsuoka J, Kano A, Oba T, Watanabe T, Sakai S, Seto K (2001) Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW Japan. Earth Planet Sci Lett 192:31–44

    Article  Google Scholar 

  • Matter JM, Takahashi T, Goldberg D (2007) Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: implications for geological CO2 sequestration. Geochem Geophys Geosyst 8:Q02001. doi:10.1029/2006GC001427

    Article  Google Scholar 

  • Meunier A, Sardini P, Robinet JC, Prêt D (2007) The petrography of weathering processes: facts and outlooks. Clay Miner 42:415–435

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Millot R, Gaillardet J, Dupré B, Allègre CJ (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet Sci Lett 196:83–98

    Article  Google Scholar 

  • Mook WG, Groenweld DJ, Brouwn AE, van Ganwijk AJ (1974) Analysis of a run-off hydrograph by means of natural 18O. Conference Proceedings Isotope Techniques in Ground-Water Hydrology, IAEA, Vienna, pp 145–155

  • Moulton KL, West J, Berner RA (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300:539–570

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2011): Mauna Loa Annual Mean CO2. Available on ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_mlo.txt. Accessed the 05-02-2012

  • Négrel P, Allègre CJ, Dupré B, Lewin E (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin case. Earth Planet Sci Lett 120:59–76

    Article  Google Scholar 

  • Nesbitt HW, Wilson RE (1992) Recent chemical weathering of basalts. Am J Sci 292:740–777

    Article  Google Scholar 

  • Pacheco FAL, Van der Weijden CH (2012) Weathering of plagioclase across variable flow and solute transport regimes. J Hydrol 420–421:46–58

    Article  Google Scholar 

  • Pokrovsky OS, Schott J, Kudryavtzev DI, Dupré B (2005) Basalt weathering in Central Siberia under permafrost conditions. Geochim Cosmochim Acta 69(24):5659–5680

    Article  Google Scholar 

  • Quinn JA (1988) Relationship between temperature and radon levels in Lehma Caves, Nevada. US Natl Speleol Soc Bull 50:9–63

    Google Scholar 

  • Readon EJ, Allison GB, Fritz P (1979) Seasonal chemical and isotopic variations of soil CO2 at Trout Creeg, Ontario. J Hydrol 43:355–371

    Article  Google Scholar 

  • Rightmire CT (1978) Seasonal variation in pCO2 and 13C content of soil atmosphere. Water Res 14:691–692

    Article  Google Scholar 

  • Rose TP, Davisson ML, Criss RE (1996) Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California. J Hydrol 179:207–236

    Article  Google Scholar 

  • Sausse J, Jacquot E, Leroy J, Lespinasse M (2001) Evolution of crack permeability during fluid–rock interaction. Example of the Brézouard granite (Vosges, France). Tectonophysics 336:199–214

    Article  Google Scholar 

  • Self S, Keszthelyi L, Thordarson T (1998) The importance of pāhoehoe. Annu Rev Planet Sci 26:81–110

    Article  Google Scholar 

  • Simler R (2003) Diagramme software. Available on: http://www.lha.univ-avignon.fr/LHA-Logiciels.htm. Accessed the 05-02-2012

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res 88(C14):9671–9688

    Article  Google Scholar 

  • Stefansson A, Gislason SR (2001) Chemical weathering of basalts, Southwest Iceland: effect of rock crystallinity and secondary minerals on chemical fluxes to the oceans. Amer J Sci 301:513–556

    Article  Google Scholar 

  • Stewart BW, Capo RC, Chadwick OA (2001) Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochim Cosmochim Acta 65:1087–1099

    Article  Google Scholar 

  • Stieljes L (1988) Hydrogéologie de l’île volcanique océanique de Mayotte (archipel des Comores, océan indien occidental) [Hydrogeology of the oceanic volcanic island of Mayotte (Comores archipelgo, occidental Indian ocean)]. Hydrogeol J 2:135–152

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry. Wiley, New York, p 780

    Google Scholar 

  • Toutain JP, Baubron JC (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304:1–27

    Article  Google Scholar 

  • Truesdell AH, Jones RF (1974) WATEQ, a computer program for calculating chemical equilibria of natural waters. US Geol Survey J Res 2(2):233–274

    Google Scholar 

  • Violette S, Ledoux E, Goblet P, Carbonnel JP (1997) Hydrologic and thermal modelling of an active volcano: the Piton de la Fournaise, La Réunion Island. J Hydrol 191:37–63

    Article  Google Scholar 

  • Vogel JC, Grootes PM, Mook WG (1970) Isotope fractionation between gaseous and dissolved carbon dioxide. J Phys 230:255–258

    Google Scholar 

  • White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747

    Article  Google Scholar 

  • Wigley TML (1975) Carbon 14 dating of groundwater from closed and open systems. Wat Res Res 11(2):324–328

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Féligonde, the municipalities of Volvic and Blanzat, the Syndicat Basse Limagne, and the ALTEAU Company for their authorizations to access to springs and water supply galleries, and Sébastien Valade and Arnaud Villaros for their help in figure designing. The collaboration with Christophe Rénac for isotopes analyses as well as the comments from Christophe Emblanch on the interpretation of results was much appreciated. They thank Jessica Meeks for her assistance in improving the quality of the text and two anonymous reviewers for their remarks which allowed improvement of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bertrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertrand, G., Celle-Jeanton, H., Loock, S. et al. Contribution of \( {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} \) and 13CTDIC Evaluation to the Identification of CO2 Sources in Volcanic Groundwater Systems: Influence of Hydrometeorological Conditions and Lava Flow Morphologies—Application to the Argnat Basin (Chaîne des Puys, Massif Central, France). Aquat Geochem 19, 147–171 (2013). https://doi.org/10.1007/s10498-012-9185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-012-9185-0

Keywords

Navigation