Skip to main content
Log in

Numerical Simulation of the Negative Magnus Effect of a Two-Dimensional Spinning Circular Cylinder

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Based on the finite volume method, the flow past a spinning circular cylinder at a low subcritical Reynolds number (Re =1 × 10 5), high subcritical Reynolds number (Re =1.3 ×10 5), and critical Reynolds number (Re =1.4 ×10 5) were each simulated using the Navier-Stokes equations and the γ-Re 𝜃 transition model coupled with the SST kω turbulence model. The system was solved using an implicit algorithm. The freestream turbulence intensity decay was effectively controlled by the source term method proposed by Spalart and Rumsey. The variations in the Magnus force as a function of the spin ratio, α were obtained for the three Reynolds numbers, and the flow mechanism was analyzed. The results indicate that the asymmetric transitions induced by spin affect the asymmetric separations at the top and bottom surfaces of the circular cylinder, which further affects the pressure distributions at the top and bottom surfaces of the circular cylinder and ultimately result in a negative Magnus force, whose direction is opposite to that of the classical Magnus force. This study is the first to use a numerical simulation method to predict a negative Magnus force acting on a spinning circular cylinder. At the low subcritical Reynolds number, the Magnus force remained positive for all spin ratios. At the high subcritical Reynolds number, the sign of the Magnus force changed twice over the range of the spin ratio. At the critical Reynolds number, the sign of the Magnus force changed only once over the range of the spin ratio. For relatively low spin ratios, the Magnus force significantly differed by Reynolds number; however, this variation diminished as the spin ratio increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Magnus, G: On the deflection of a projectile. Poggendorffs Annalen der Physik und Chemie 88(1), 804–810 (1853)

    Google Scholar 

  2. Rayleigh, L: On the irregular flight of a tennis ball. Messenger Math. 7, 14 (1877)

    Google Scholar 

  3. Lafay, A.: Sur l’Inversion du phenomene de Magnus. Comptes Rendus 151, 417–442 (1910)

    Google Scholar 

  4. Lafay, A.: Contribution experimentale a l’aerodynamique du cylindre. Revues Mechanique 30, 417–442 (1912)

    Google Scholar 

  5. Thom, A.: The Aerodynamics of a Rotating Cylinder. Thesis, University of Glasgow (1926)

  6. Thom, A.: Experiments on the flow past a rotating cylinder. ARC R and M 1410 (1931)

  7. Thom, A., Sengupta, S.R.: Air torque on a rotating cylinder in an air stream. ARC R and M 1520 (1932)

  8. Krahn, E.: Negative Magnus force. J. Aeronaut. Sci. 23(4), 377–378 (1956)

    Article  Google Scholar 

  9. Swanson, W.M.: An experimental investigation of the Magnus effect, Final Report, OOR Proj. No. 1082, Case Inst. of Tech.

  10. Aoki, K., Ito, T.: Flow characteristics around a rotating cylinder. In: Proceedings of the School of Engineering of Tokai University, vol. 26, pp 29–34 (2001)

  11. Karabelas, S.J.: Large eddy simulation of high-Reynolds number flow past a rotating cylinder. Int. J. Heat Fluid Flow 31, 518–527 (2010)

    Article  Google Scholar 

  12. Karabelas, S.J., Koumroglou, B.C., Argyropoulos, C.D., Markatos, N.C.: High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model. 36, 379–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Muto, M., Tsubokura, M., Oshima, N.: Negative Magnus lift on a rotating sphere at around the critical Reynolds number. Phys. Fluids 24(1), 014102 (2012)

    Article  Google Scholar 

  14. Abu-Ghannam, B.J., Shaw, R.: Natural transition of boundary layers: The effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 22(5), 213–228 (1980)

    Article  Google Scholar 

  15. Stock, H.W.: Infinite swept-wing Navier-Stokes computations with e N transition prediction. AIAA J. 43(6), 1221–1229 (2005)

    Article  Google Scholar 

  16. Krumbein, A.: Automatic transition prediction and application to 3D high-lift configurations. AIAA Paper 2006–3164 (2006)

  17. Dhawan, S., Narasimha, R.: Some properties of boundary layer flow during transition from laminar to turbulent motion. J. Fluid Mech. 3(4), 418–436 (1958)

    Article  MATH  Google Scholar 

  18. Cho, J.R., Chung, M.K.: A equation turbulence model. J. Fluid Mech. 237, 301–322 (1992)

    Article  MATH  Google Scholar 

  19. Suzen, Y.B., Huang, P.G., Hultgren, L.S., Ashpis, D.E.: Predictions of separated and transitional boundary layers under low-pressure turbine airfoil conditions using an intermittency transport equation. J. Turbomach. 125(3), 455–464 (2003)

    Article  Google Scholar 

  20. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A correlation based transition model using local variables part I - model formulation, ASME-GT2004-53452, ASME TURBO EXPO 2004, Vienna, Austria

  21. Langtry, R.B., Menter, F.R.: Transition modeling for general CFD applications in aeronautics. AIAA paper 2005–522 (2005)

  22. Langtry, R.B., Menter, F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47(12), 2894–2906 (2009)

    Article  Google Scholar 

  23. Spalart, P.R., Rumsey, C.L.: Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J. 45(10), 2544–2553 (2007)

    Article  Google Scholar 

  24. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  25. Cantwell, B., Coles, D.: An experimental study on entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321–374 (1983)

    Article  Google Scholar 

  26. Travin, A., Shur, M., et al.: Detached-eddy simulations past a circular cylinder. Flow Turbul. Combust. 63, 293–313 (1999)

    Article  MATH  Google Scholar 

  27. Breuer, M.: A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow. Int. J. Heat Fluid Flow 21, 648–654 (2000)

    Article  Google Scholar 

  28. Du, L., Ning, F.: Scale adaptive simulation of flows around a circular cylinder at high sub-critical reynolds number. Chin. J. Theor. Appl. Mech. 46(4), 487–496 (2014)

    MathSciNet  Google Scholar 

  29. Swanson, W.H.: The Magnus effect: A summary of investigations to date. J. Basic Eng. 83(3), 461–470 (1961)

    Article  Google Scholar 

  30. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid. Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanmian Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Lei, J. & Wu, X. Numerical Simulation of the Negative Magnus Effect of a Two-Dimensional Spinning Circular Cylinder. Flow Turbulence Combust 98, 109–130 (2017). https://doi.org/10.1007/s10494-016-9747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9747-0

Keywords

Navigation