Skip to main content
Log in

On the Evolution of the Flow Field in a Spark Ignition Engine

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The development of the turbulent flow field inside a spark ignition engine is examined by large-eddy simulation (LES), from the intake flow to the tumble break-down. Ten consecutive cold flow engine cycles on a coarse and twenty cycles on a fine grid are simulated and compared to experiments of the same engine. The turbulent subgrid scales are modeled by the standard Smagorinsky and by the recently developed Sigma model. A comparison of the intake flow is made against Particle Image Velocimetry (PIV) measurements along horizontal and vertical lines and to an LES simulation performed by the Darmstadt group. Furthermore, we show the first LES comparison to Magnetic Resonance Velocimetry (MRV conducted by Freudenhammer et al.) measurements, which provided the 3D flow field inside a full scale dummy of the entire upper cylinder head including the valve seat region, at a time which mimics inflow conditions of the corresponding engine. Our LES is in good qualitative and quantitative agreement with the simulation and the experiments, with the notable exception of the measured in-cylinder pressure, which is discussed in detail and compared to 0D simulations and simulations from other groups. A criterion is proposed for estimating the number of cycles needed in a simulation, if experimental data is available. We put emphasis on the flow in the valve seat region, where turbulence is generated, and discuss the formation of the large scale tumble motion, including a comparison of the radial velocity fields on rolled-up planes around the valve seat. Here, spots of high velocities were found in the under flow region, which cannot been seen by the ensemble averaged MRV measurement. Within the compression stroke, a 2D vortex center identification algorithm is applied on slices inside the combustion chamber, yielding a 3D visualization of the tumble vortex, which is found to have a “croissant-like” shape. The tumble vortex trajectory is plotted on the symmetry plane and compared to measurements. Finally, we consider a modified definition of the (turbulent) integral length scale that provided further insight to the tumble break-down process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Auriemma, M., Corcione, F., Macchioni, R., Valentino, G.: Assessment of K- ε Turbulence Model in Kiva II by In-Cylinder Ldv Measurements Tech. rep. SAE Technical Paper (1995)

  2. Baum, E., Peterson, B., Böhm, B., Dreizler, A.: On the validation of LES applied to internal combustion engine flows: part 1: comprehensive experimental database. Flow Turbul. Combust. 92(1-2), 269–297 (2014)

    Article  Google Scholar 

  3. Baumann, M., di Mare, F., Janicka, J.: On the validation of large eddy simulation applied to internal combustion engine flows part ii: Numerical analysis. Flow Turbul. Combust. 92(1-2), 299–317 (2014)

    Article  Google Scholar 

  4. Bücker, I., Karhoff, D. C., Klaas, M., Schröder, W.: Stereoscopic multi-planar PIV measurements of in-cylinder tumbling flow. Exp. Fluids 53(6), 1993–2009 (2012)

    Article  Google Scholar 

  5. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for les of premixed turbulent combustion part i: non-dynamic formulation and initial tests. Combust. Flame 131(1), 159–180 (2002)

    Article  Google Scholar 

  6. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids (1994-present) 12(7), 1843–1863 (2000)

    Article  MATH  Google Scholar 

  7. Corcione, F., Valentino, G.: Turbulence Length Scale Measurements by Two-Probe-Volume LDA Technique in a Diesel Engine. Tech. Rep. Warrendale PA (USA); Society of Automotive Engineers (1990)

  8. Demirdžić, I., Lilek, ž. , Perić, M.: A collocated finite volume method for predicting flows at all speeds. Int. J. Numer. Methods Fluids 16(12), 1029–1050 (1993)

    Article  MATH  Google Scholar 

  9. Demirdžić, I., Perić, M.: Space conservation law in finite volume calculations of fluid flow. Int. J. Numer. Methods Fluids 8(9), 1037–1050 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drake, M., Haworth, D.: Advanced gasoline engine development using optical diagnostics and numerical modeling. Proc. Combust. Inst. 31(1), 99–124 (2007)

    Article  Google Scholar 

  11. Druault, P., Guibert, P., Alizon, F.: Use of proper orthogonal decomposition for time interpolation from piv data. Exp. Fluids 39(6), 1009–1023 (2005)

    Article  Google Scholar 

  12. Enaux, B., Granet, V., Vermorel, O., Lacour, C., Pera, C., Angelberger, C., Poinsot, T.: LES study of cycle-to-cycle variations in a spark ignition engine. Proc. Combust. Inst. 33(2), 3115–3122 (2011)

    Article  Google Scholar 

  13. Ferziger, J. H., Perić, M.: Computational methods for fluid dynamics Springer Science & Business Media (2012)

  14. Freudenhammer, D., Baum, E., Peterson, B., Böhm, B., Jung, B., Grundmann, S.: Volumetric intake flow measurements of an IC engine using magnetic resonance velocimetry. Exp. Fluids 55(5), 1–18 (2014)

    Article  Google Scholar 

  15. Geurts, B. J., Fröshlich, J.: A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids (1994-present) 14(6), L41–L44 (2002)

    Article  Google Scholar 

  16. Goryntsev, D., Sadiki, A., Klein, M., Janicka, J.: Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air–fuel mixing in realistic DISI IC-engines. Proc. Combust. Inst. 32(2), 2759–2766 (2009)

    Article  Google Scholar 

  17. Graftieaux, L., Michard, M., Grosjean, N.: Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12(9), 1422 (2001)

    Article  Google Scholar 

  18. Haworth, D.: Large-eddy simulation of in-cylinder flows. Oil & Gas Science and Technology 54(2), 175–185 (1999)

    Article  Google Scholar 

  19. Heywood, J. B.: Internal combustion engine fundamentals, vol. 930. McGraw-Hill, New York (1988)

    Google Scholar 

  20. Hong, C., Chen, D.: Direct measurements of in-cylinder integral length scales of a transparent engine. Exp. Fluids 23(2), 113–120 (1997)

    Article  Google Scholar 

  21. Janas, P, Ribeiro, M, Kempf, A, Schild, M, Kaiser, S: Penetration of the Flame Into the Top-Land Crevice - Large-Eddy Simulation and Experimental High-Speed Visualization SAE Technical Paper 2015-01-1907 (2015). doi:10.4271/2015-01-1907

    Google Scholar 

  22. Janas, P., Schild, M. , Kaiser, S., Kempf, A.: Numerical simulation of flame front propagation in a spark ignition engine. Proceedings of the Europeen Combustion Institute, 6 (2013)

  23. Jasak, H., Tukovic, Z.: Automatic mesh motion for the unstructured finite volume method. Transactions of FAMENA 30(2), 1–20 (2006)

    Google Scholar 

  24. Kempf, A., Flemming, F., Janicka, J.: Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 30(1), 557–565 (2005)

    Article  Google Scholar 

  25. Klein, M.: An attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul. Combust. 75(1-4), 131–147 (2005)

    Article  MATH  Google Scholar 

  26. Klein, M., Meyers, J., Geurts, B. J.: Assessment of LES Quality Measures Using the Error Landscape Approach. In: Quality and Reliability of Large-Eddy Simulations, pp 131–142. Springer (2008)

  27. di Mare, F., Knappstein, R., Baumann, M.: Application of les-quality criteria to internal combustion engine flows. Comput. Fluids 89, 200–213 (2014)

    Article  Google Scholar 

  28. Misdariis, A., Robert, A., Vermorel, O., Richard, S., Poinsot, T.: Numerical methods and turbulence modeling for les of piston engines: impact on flow motion and combustion. Oil & Gas Science and Technology Journal 69, 83 (2014)

    Article  Google Scholar 

  29. Montorfano, A., Piscaglia, F., Schmitt, M., Wright, Y. M., Frouzakis, C. E., Tomboulides, A. G., Boulouchos, K., Onorati, A.: Comparison of direct and large eddy simulations of the turbulent flow in a valve/piston assembly. Flow Turbul. Combust. 95(2-3), 461–480 (2015)

    Article  Google Scholar 

  30. Moureau, V., Barton, I., Angelberger, C., Poinsot, T.: Towards Large Eddy Simulation in Internal-Combustion Engines: Simulation of a Compressed Tumble Flow Tech. rep. SAE Technical Paper (2004)

  31. Naitoh, K., Itoh, T., Takagi, Y., Kuwahara, K.: Large Eddy Simulation of Premixed-Flame in Engine Based on the Multi-Level Formulation and the RenorMalization Group Theory Tech. rep. SAE Technical Paper (1992)

  32. Nguyen, T., Janas, P., Lucchini, T., D’Errico, G., Kaiser, S., Kempf, A.: LES of Flow Processes in an SI Engine Using Two Approaches: Openfoam and Psiphi Tech. rep. SAE Technical Paper (2014)

  33. Nguyen, T., Proch, F., Wlokas, I., Kempf, A.: Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique. Flow Turbul. Combust., 1–40

  34. Nicoud, F., Toda, H. B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids (1994-present) 23(8), 085,106 (2011)

    Article  Google Scholar 

  35. Payri, F., Olmeda, P., Martin, J., Garcia, A.: A complete 0d thermodynamic predictive model for direct injection diesel engines. Appl. Energy 88(12), 4632–4641 (2011)

    Article  Google Scholar 

  36. Pettit, M., Coriton, B., Gomez, A., Kempf, A.: Large-eddy simulation and experiments on non-premixed highly turbulent opposed jet flows. Proc. Combust. Inst. 33(1), 1391–1399 (2011)

    Article  Google Scholar 

  37. Piscaglia, F., Montorfano, A., Onorati, A.: Towards the LES simulation of IC engines with parallel topologically changing meshes. SAE Int. J. Engines 6(2), 926–940 (2013)

    Article  Google Scholar 

  38. Pope, S. B.: Turbulent flows Cambridge university press (2000)

  39. Rakopoulos, C., Kosmadakis, G., Dimaratos, A., Pariotis, E.: Investigating the effect of crevice flow on internal combustion engines using a new simple crevice model implemented in a cfd code. Appl. Energy 88(1), 111–126 (2011)

    Article  Google Scholar 

  40. Reitz, R., Corcione, F., Valentino, G., et al.: Interpretation of K-ε Computed Turbulence Length-Scale Predictions for Engine Flows. In: Symposium (International) on Combustion, vol. 26, pp 2717–2723. Elsevier (1996)

  41. Schmitt, M., Frouzakis, C. E., Tomboulides, A. G., Wright, Y. M., Boulouchos, K.: Direct numerical simulation of the effect of compression on the flow, temperature and composition under engine-like conditions. Proc. Combust. Inst. 35(3), 3069–3077 (2015)

    Article  Google Scholar 

  42. Schmitt, M., Frouzakis, C. E., Wright, Y. M., Tomboulides, A., Boulouchos, K.: Direct numerical simulation of the compression stroke under engine relevant conditions: Local wall heat flux distribution. Int. J. Heat Mass Transf. 92, 718–731 (2016)

    Article  Google Scholar 

  43. Schmitt, M., Frouzakis, C. E., Wright, Y. M., Tomboulides, A. G., Boulouchos, K.: Direct numerical simulation of the compression stroke under engine-relevant conditions: Evolution of the velocity and thermal boundary layers. Int. J. Heat Mass Transf. 91, 948–960 (2015)

    Article  Google Scholar 

  44. Schmitt, M., Frouzakis, C. E., Wright, Y. M., Tomboulides, A. G., Boulouchos, K.: Investigation of wall heat transfer and thermal stratification under engine-relevant conditions using dns International Journal of Engine Research p 1468087415588710 (2015)

  45. Smagorinsky, J.: General circulation experiments with the primitive equations: i. the basic experiment*. Mon. Wea. Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  46. Stiehl, R., Bode, J., Schorr, J., Krüger, C., Dreizler, A., Böhm, B.: Influence of intake geometry variations on in-cylinder flow and flow-spray interactions in a stratified direct-injection spark-ignition engine captured by time-resolved particle image velocimetry. Int. J. Engine Res. (2016). doi:10.1177/1468087416633541

    Google Scholar 

  47. Sutherland, W.: Lii. the viscosity of gases and molecular force. The London Edinburgh, and Dublin Philosophical Magazine and Journal of Science 36(223), 507–531 (1893)

    Article  MATH  Google Scholar 

  48. Sweby, P. K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., Veynante, D.: Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combust. Flame 156(8), 1525–1541 (2009)

    Article  Google Scholar 

  50. Weclas, M., Melling, A., Durst, F.: Flow separation in the inlet valve gap of piston engines. Prog. Energy Combust. Sci. 24(3), 165–195 (1998)

    Article  Google Scholar 

  51. Woschni, G.: A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. Tech. rep., SAE Technical paper (1967)

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the work by the state of NRW, Germany. We would like to thank the CCSS, University of Duisburg-Essen, for providing the computational resources. We also thank the group of Prof. Dreizler for the PIV measurements and many helpful discussions, and Daniel Freudenhammer for the MRV measurement data. Furthermore, we would like to thank Brian Peterson and Tommaso Lucchini for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Janas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janas, P., Wlokas, I., Böhm, B. et al. On the Evolution of the Flow Field in a Spark Ignition Engine. Flow Turbulence Combust 98, 237–264 (2017). https://doi.org/10.1007/s10494-016-9744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9744-3

Keywords

Navigation