Skip to main content

Advertisement

Log in

Compressible-Flow DNS with Application to Airfoil Noise

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Airfoil self-noise is the noise produced by the interaction between an airfoil with its own boundary layers and wake. Self-noise is of concern as it is an important contributor to the overall noise in many applications, e.g. wind turbines, cooling fan blades, or air frames, to name a few. The continued growth of available computing power has made direct numerical simulations (DNS) of compressible flows with application to airfoil noise possible. Challenges associated with such simulations and numerical details of a DNS code that is able to exploit modern high-performance computing systems are presented. Results obtained from DNS of flow over NACA-0012 airfoils at moderate Reynolds number are used to evaluate the accuracy of approximations commonly made in deriving trailing edge noise theories. The data are also used to identify additional noise sources present in airfoil configurations. Finally, DNS are employed to study the noise reducing effect of trailing-edge noise serrations, indicating that the noise reduction is mainly due to a changed scattering mechanisms and not a change in the incidence turbulence field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amiet, R.: High-frequency thin airfoil theory for subsonic flow. AIAA J. 14(8), 1076–1082 (1976a)

    Article  MATH  Google Scholar 

  2. Amiet, R.: Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47(3) (387)

  3. Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comp. Phys. 148(2), 341–365 (1999)

    Article  MATH  Google Scholar 

  4. Colonius, T., Lele, S.: Computational aeroacoustics: Progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40(6), 345–416 (2004)

    Article  Google Scholar 

  5. Crighton, D.G.: Goals for computational aeroacoustics Computational aeroacousitcs: Algorithms and applications, proceedings of the 1st IMACS symposium on computational aeroacoustics. Elsevier Science Publishers, Amsterdam (1986)

  6. Curle, N.: The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. 231, 505–514 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ewert, R.: Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method. Comput. Fluids 37(4), 369–387 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ewert, R., Dierke, J., Siebert, J., Neifeld, A., Appel, C., Siefert, M., Kornow, O.: CAA broadband noise prediction for aeroacoustic design. J. Sound Vib. 330(17), 4139–4160 (2011)

    Article  Google Scholar 

  9. Williams, J.F., Hall, L.: Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40(4), 657–670 (1970)

    Article  MATH  Google Scholar 

  10. Freund, J.: Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277–305 (2001)

    Article  MATH  Google Scholar 

  11. Herr, M., Dobrzynski, W.: Experimental investigations in low-noise trailing-edge design. AIAA J. 43(6), 1167–1175 (2005)

    Article  Google Scholar 

  12. Howe, M.S.: Noise produced by a sawtooth trailing edge. J. Acoust. Soc. Am. 90, 482 (1991)

    Article  Google Scholar 

  13. Hu, Z., Morfey, C., Sandham, N.: Sound radiation in turbulent channel flows. J. Fluid Mech. 475, 269–302 (2003)

    Article  MATH  Google Scholar 

  14. Jones, L., Sandham, N., Sandberg, R.: Acoustic source identification for transitional airfoil flows using cross correlations. AIAA J. 48, 10 (2010a)

    Google Scholar 

  15. Jones, L.E.: Numerical studies of the flow around an airfoil at low Reynolds number, PhD thesis. University of Southampton (2007)

  16. Jones, L.E., Sandberg, R.: Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations. J. Fluid Mech. 706, 295–322 (2012)

    Article  MATH  Google Scholar 

  17. Jones, L.E., Sandberg, R., Sandham, N.: Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175–207 (2008)

    Article  MATH  Google Scholar 

  18. Jones, L.E., Sandberg, R., Sandham, N.: Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257–296 (2010b)

    Article  MATH  Google Scholar 

  19. Kennedy, C., Carpenter, M., Lewis, R.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35, 177–219 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kennedy, C., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comp. Phys. 227, 1676–1700 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim, J., Lee, D.: Characteristic interface conditions for multiblock high-order computation on singular structured grid. AIAA J. 41(12), 2341–2348 (2003)

    Article  Google Scholar 

  22. Kim, J.W., Sandberg, R.D.: Efficient parallel computing with a compact finite difference scheme. Comput. Fluids 58, 70–87 (2012)

    Article  MathSciNet  Google Scholar 

  23. Lele, S. Computational Aeroacoustics: A Review, AIAA Paper 97–18 (1997)

  24. Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. London Ser. A: Math. Phys. Sci. 211A(1107), 564–587 (1952)

    Article  MathSciNet  Google Scholar 

  25. Lutz, T., Herrig, A., Würz, W., Kamruzzaman, M., Krämer, E.: Design and wind-tunnel verification of low-noise airfoils for wind turbines. AIAA J. 45 (4), 779–785 (2007)

    Article  Google Scholar 

  26. Marsden, O., Bogey, C., Bailly, C.: Direct noise computation of the turbulent flow around a zero-incidence airfoil. AIAA J. 46(4), 874–883 (2008)

    Article  Google Scholar 

  27. Moin, P., Mahesh, K.: Direct numerical simulation: A tool in turbulence research. Ann. Rev. Fluid Mech. 30(1), 539–578 (1998)

    Article  MathSciNet  Google Scholar 

  28. Oerlemans, S., Fisher, M., Maeder, T., Kogler, K.: Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA Paper 08-2819 (2008). 14th AIAA/CEAS Aeroacoustics Conference, Vancouver, May

  29. Peake, N., Kerschen, E.: Influence of mean loading on noise generated by the interaction of gusts with a flat-plate cascade: Upstream radiation. J. Fluid Mech. 347, 315–346 (1997)

    Article  MATH  Google Scholar 

  30. Sandberg, R., Pichler, R., Chen, L., Johnstone, R., Michelassi, V.: Compressible direct numerical simulation of low-pressure turbines: Part I – methodology. J. Turbomach. 137, 051011–1–051011–10 (2015)

    Article  Google Scholar 

  31. Sandberg, R.D.: Numerical investigation of turbulent supersonic axisymmetric wakes. J. Fluid Mech. 702, 488–520 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sandberg, R.D., Jones, L.E.: Direct numerical simulations of low Reynolds number flow over airfoils with trailing-edge serrations. J. Sound Vib. 330(16), 3818–3831 (2011). doi:10.1016/j.jsv.2011.02.005

    Article  Google Scholar 

  33. Sandberg, R.D., Jones, L.E., Sandham, N.: Direct numerical simulations of noise generated by turbulent flow over airfoils. AIAA Paper 2008–2861 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), Vancouver, Canada (2008)

  34. Sandberg, R.D., Jones, L.E., Sandham, N.D., Joseph, P.F.: Direct numerical simulations of tonal noise generated by laminar flow past airfoils. J. Sound Vib. 320(4–5), 838–858 (2009). doi:10.1016/j.jsv.2008.09.003

    Article  Google Scholar 

  35. Sandberg, R.D., Sandham, N.D.: Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound. AIAA J. 44(2), 402–405 (2006)

    Article  Google Scholar 

  36. Sandberg, R.D., Sandham, N.D.: Direct numerical simulation of turbulent flow past a trailing edge and the associated noise generation. J. Fluid Mech. 596, 353–385 (2008)

    Article  MATH  Google Scholar 

  37. Sandham, N., Li, Q., Yee, H.: Entropy splitting for high-order numerical simulation of compressible turbulence. J. Comp. Phys. 178, 307–322 (2002)

    Article  MATH  Google Scholar 

  38. Sandhu, H., Sandham, N.D.: Boundary conditions for spatially growing compressible shear layers. Report QMW-EP-1100, Faculty of Engineering, Queen Mary and Westfield College, University of London (1994)

  39. Sinayoko, S., Kingan, M., Agarwal, A.: Trailing edge noise theory for rotating blades in uniform flow. Proc. R. Soc. A: Math Phys. Eng. Sci. 469(2157), 20130065 (2013)

    Article  Google Scholar 

  40. Tam, C.: Computational aeroacoustics: Issues and methods. AIAA J. 33(10), 1788–1796 (1995)

    Article  MATH  Google Scholar 

  41. Wang, M., Freund, J.B., Lele, S.K.: Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483–512 (2006)

    Article  MathSciNet  Google Scholar 

  42. Wolf, W.R., Azevedo, J.L.F., Lele, S.K.: Convective effects and the role of quadrupole sources for aerofoil aeroacoustics. J. Fluid Mech. 708, 502–538 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008)

    Article  MATH  Google Scholar 

  44. Zhu, W., Heilskov, N., Shen, W., Sørensen, J.: Modeling of aerodynamically generated noise from wind turbines. J. Solar Energy Engineering 127, 517 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Sandberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandberg, R.D. Compressible-Flow DNS with Application to Airfoil Noise. Flow Turbulence Combust 95, 211–229 (2015). https://doi.org/10.1007/s10494-015-9617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9617-1

Keywords

Navigation