Skip to main content
Log in

Dissipative particle dynamics simulation of flow through periodic arrays of circular micropillar

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pillar design. This work presents a dissipative particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of circular micropillar and investigates the permeability of two types of micropillar arrays. The flow fields including horizontal and vertical velocity fields, the number density field, and the streamline of the flow are analyzed. The predicted solid volumes by the presented DPD simulation of both types of arrays are quite close to the actual counterparts. These quantitative agreements show usefulness and effectiveness of the DPD model in simulating arrays of micropillar. By comparing two types of micropillar arrangement patterns, we find that the arrangement pattern of micropillar does not have significant influence on the permeability of the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

r i :

position of DPD particle i

v i :

velocity of DPD particle i

m i :

mass of DPD particle i

f i :

total force acting on particle i

f int i :

inter-particle force acting on particle i

f ext i :

external force acting on particle i

F C ij :

conservative force on particle i due to j

F D ij :

dissipative force on particle i due to j

F R ij :

random force on particle i due to j

w D(r ij ):

weight function of F D ij

w R(r ij ):

weight function of F R ij

v ij :

relative velocity between particles i and j

ξ ij :

random variable with Gaussian statistics

T :

absolute temperature

k B :

Boltzmann constant

r d :

cut-off radius for F D ij and F R ij

s :

exponent of weighting function w R(r)

ρ :

density of fluid

μ :

viscosity of fluid

a ij :

repulsion parameter between particles i and j

r ij :

relative position between particles i and j

r ij :

distance between particles i and j

\(\hat r_{ij}\) :

unit vector directed from particle j to i

w C(r ij ):

conservative weight function

r c :

cut-off radius for F C ij

γ:

amplitude of F D ij

σ :

amplitude of F R ij

d :

pillar diameter

v :

flow velocity relative to object

A :

area

C D :

drag coefficient

Re :

Reynolds number

F D :

dragforce

h :

height of channel

l :

length of channel

φ :

solid volume fraction

K :

permeability

g :

body force exerting on every DPD particle

References

  1. De Beeck, J. O., de Malsche, W., Tezcan, D. S., de Moor, P., and Desmet, G. Impact of the limitations of state-of-the-art micro-fabrication processes on the performance of pillar array columns for liquid chromatography. Journal of Chromatography A, 1239, 35–48 (2012)

    Article  Google Scholar 

  2. Hale, R. S., Ranjan, R., and Hidrovo, C. H. Capillary flow through rectangular micropillar arrays. International Journal of Heat and Mass Transfer, 75, 710–717 (2014)

    Article  Google Scholar 

  3. Cui, H. H. and Lim, K. M. Pillar array microtraps with negative dielectrophoresis. Langmuir, 25 6, 3336–3339 (2009)

    Article  Google Scholar 

  4. Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., Smith, M. R., Kwak, E. L., Digumarthy, S., Muzikansky, A., and Ryan, P. Isolation of rare circulating tumour cells in cancer patients by microchip technology. nature, 450 7173, 1235–1239 (2007)

    Article  Google Scholar 

  5. Tamayol, A., Yeom, J., Akbari, M., and Bahrami, M. Low Reynolds number flows across ordered arrays of micro-cylinders embedded in a rectangular micro/minichannel. International Journal of Heat and Mass Transfer, 58, 420–426 (2013)

    Article  Google Scholar 

  6. Tamayol, A. and Bahrami, M. Analytical determination of viscous permeability of fibrous porous media. International Journal of Heat and Mass Transfer, 52, 2407–2414 (2009)

    Article  MATH  Google Scholar 

  7. Tamayol, A. and Bahrami, M. Transverse permeability of fibrous porous media. Physical Review E, 83, 046314 (2011)

    Article  MATH  Google Scholar 

  8. Du Plessis, J. P. Analytical quantification of coefficients in the Ergun equation for fluid friction in a packed bed. Transport in Porous Media, 16 2, 189–207 (1994)

    Article  Google Scholar 

  9. Spielman, L. and Goren, S. L. Model for predicting pressure drop and filtration efficiency in fibrous media. Environmental Science and Technology, 2, 279–287 (1968)

    Article  Google Scholar 

  10. Srivastava, N., Din, C., Judson, A., MacDonald, N. C., and Meinhart, C. D. A unified scaling model for flow through a lattice of microfabricated posts. Lab on a Chip, 10, 1148–1152 (2010)

    Article  Google Scholar 

  11. Ranjan, R., Patel, A., Garimella, S. V., and Murthy, J. Y. Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders. International Journal of Heat and Mass Transfer, 55, 586–596 (2012)

    Article  MATH  Google Scholar 

  12. Ellero, M. and Adams, N. A. SPH simulations of flow around a periodic array of cylinders confined in a channel. International Journal for Numerical Methods in Engineering, 86, 1027–1040 (2011)

    Article  MATH  Google Scholar 

  13. Liu, M., Meakin, P., and Huang, H. Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water Resources Research, 43(4), W04411 (2007)

    Article  Google Scholar 

  14. Hoogerbrugge, P. J. and Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19 3, 155–160 (1992)

    Article  Google Scholar 

  15. Liu, M. B., Liu, G. R., Zhou, L. W., and Chang, J. Z. Dissipative particle dynamics (DPD): an overview and recent developments. Archives of Computational Methods in Engineering, 22 4, 529–556 (2015)

    Article  MathSciNet  Google Scholar 

  16. Espaol, P. and Warren, P. Statistical mechanics of dissipative particle dynamics. Europhysics Letters, 30 4, 191–196 (1995)

    Article  Google Scholar 

  17. Fan, X., Phan-Thien, N., Chen, S., Wu, X., and Ng, T. Y. Simulating flow of DNA suspension using dissipative particle dynamics. Physics of Fluids, 18, 063102 (2006)

    Article  MATH  Google Scholar 

  18. Wu, X., Phan-Thien, N., Fan, X. J., and Ng, T. Y. A molecular dynamics study of drop spreading on a solid surface. Physics of Fluids, 15 6, 1357–1362 (2003)

    Article  MATH  Google Scholar 

  19. Groot, R. D. Electrostatic interactions in dissipative particle dynamics—imulation of polyelectrolytes and anionic surfactants. The Journal of Chemical Physics, 118 24, 11265–11277 (2003)

    Article  Google Scholar 

  20. Dzwinel, W., Yuen, D. A., and Boryczko, K. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model. Molecular Modeling Annual, 8 1, 33–43 (2002)

    Article  Google Scholar 

  21. Janna, W. S. Introduction to Fluid Mechanics, CRC Press, Boca Raton (2009)

    Google Scholar 

  22. Spielman, L. and Goren, S. L. Model for predicting pressure drop and filtration efficiency in fibrous media. Environmental Science and Technology, 2 4, 279–287 (1968)

    Article  Google Scholar 

  23. Jackson, G. W. and James, D. F. The permeability of fibrous porous media. Canadian Journal of Chemical Engineering, 64, 364–374 (1986)

    Article  Google Scholar 

  24. Higdon, J. J. L. and Ford, G. D. Permeability of three-dimensional models of fibrous porous media. Journal of Fluid Mechanics, 308, 341–361 (1996)

    Article  MATH  Google Scholar 

  25. Chernyakov, A. L. Fluid flow through three-dimensional fibrous porous media. Journal of Experimental and Theoretical Physics, 86, 1156–1165 (1998)

    Article  Google Scholar 

  26. Liu, M. B. and Liu, G. R. Particle Methods for Multi-Scale and Multi-Physics, World Scientific, Singapore (2015)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moubin Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 31370953, 10942004, and 91230203)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhang, Y., Deng, X. et al. Dissipative particle dynamics simulation of flow through periodic arrays of circular micropillar. Appl. Math. Mech.-Engl. Ed. 37, 1431–1440 (2016). https://doi.org/10.1007/s10483-016-2091-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2091-9

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation