Skip to main content

Advertisement

Log in

Characterization of a planctomycete associated with the marine dinoflagellate Prorocentrum micans Her

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

During attempts to obtain axenic the cultures of the marine dinoflagellate Prorocentrum micans, a microorganism with peculiar features was isolated. This contaminant resisted the physical and antibiotic treatments performed. Subsequent characterization showed that in agar plates this microorganism develops round granular pink colonies. It is a salt-dependent mesophilic and chemoheterotrophic Gram negative bacterium with a rod to ovoid shape, presenting cell motility in young cultures. Cell division occurs by cell budding. The bacterium forms aggregates with a variable number of cells that are stacked by fibrillar glycoproteic material, the holdfast. A tuft of numerous short glycoproteic fimbriae emerges from one pole of the cell. Preeminent granular inclusions, also of glycoproteic nature, are present in the cytoplasm. Several structural and compositional aspects of the cell envelope and cytoplasm are provided. The production of fibrillar material and the existence of the polar appendages suggest that this microorganism should occur in aquatic environments bound to substrates and could be associated with P. micans in natural marine habitats. Based on the characteristics displayed, this microorganism is a member of the Planctomycetes, order Planctomycetales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barlaan EA, Furukawa S, Takeuchi K (2007) Detection of bacteria associated with harmful algal blooms from coastal and microcosm environments using electronic microarrays. Environ Microbiol 9(3):690–702

    Article  PubMed  CAS  Google Scholar 

  • Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol Bull 143(2):265–277

    Article  Google Scholar 

  • Bengtsson MM, Sjotun K, Ovreås L (2010) Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea. Aquat Microb Ecol 60(1):71–83

    Article  Google Scholar 

  • Berland BR, Bonin DJ, Maestrini SY (1970) Study of bacteria associated with marine algae in culture III organic substrates supporting growth. Mar Biol 5(1):68–76

    Article  Google Scholar 

  • Biegala IC, Kennaway G, Alverca E, Lennon J, Vaulot D, Simon N (2002) Identification of bacteria associated with dinoflagellates (Dinophyceae) Alexandrium spp. using tyramide signal amplification–fluorescent in situ hybridization and confocal microscopy. J Phycol 38:404–411

    Article  CAS  Google Scholar 

  • Bockelmann U, Manz W, Neu TR, Szewzyk U (2000) Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33(2):157–170

    Article  CAS  Google Scholar 

  • Brümmer IH, Felske AD, Wagner-Dobler I (2004) Diversity and seasonal changes of uncultured Planctomycetales in river biofilms. Appl Environ Microbiol 70(9):5094–5101

    Article  PubMed  Google Scholar 

  • Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S (2011) Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J 5(4):590–600

    Article  PubMed  CAS  Google Scholar 

  • Chipman L, Podgorski D, Green S, Kostka J, Cooper W, Huettel M (2010) Decomposition of plankton-derived dissolved organic matter in permeable coastal sediments. Limnol Oceanogr 55(2):857–871

    Article  CAS  Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13(1):291–314

    Article  Google Scholar 

  • Cole JJ, Caraco NF, Strayer DL, Ochs C, Nolan SS (1989) A detailed carbon budget as an ecosystem-level calibration of bacterial respiration in an oligotrophic lake during mid-summer. Limnol Oceanogr 34:286–296

    Article  CAS  Google Scholar 

  • Córdova JL, Escudero C, Bustamante J (2003) Bloom inside the bloom: intracellular bacteria multiplication within toxic dinoflagellates. Rev Biol Mar Oceanogr 38:57–67

    Article  Google Scholar 

  • El-Ghazaly G, Jensen WA (1987) Development of wheat (Triticum aestivum) polen. II. Histochemical differentiation of wall and Ubisch bodies during development. Am J Bot 74:1396–1418

    Article  Google Scholar 

  • Fuerst JA (1995) The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology 141:1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, Sagulenko E (2012) Keys to eukaryality: planctomycetes and ancestral evolution of cellular complexity. Front Microbiol 3:167

    Article  PubMed  Google Scholar 

  • Fuerst JA, Sagulenko E (2013) Nested bacterial boxes: nuclear and other intracellular compartments in Planctomycetes. J Mol Microbiol Biotechnol 23(1–2):95–103

    Article  PubMed  CAS  Google Scholar 

  • Fuerst JA, William HG, Lindsay M, Lichanska A, Belcher C, Vickers JE, Hugenholtz P (1997) Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon. Appl Environ Microbiol 63:254–262

    PubMed  CAS  Google Scholar 

  • Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Tokota A, Harayama S (2009) Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J Gen Appl Microbiol 55:267–275

    Article  PubMed  CAS  Google Scholar 

  • Gade D, Stuhrmann T, Reinhardt R, Rabus R (2005) Growth phase dependent regulation of protein composition in Rhodopirellula baltica. Environ Microbiol 7(8):1074–1084

    Article  PubMed  CAS  Google Scholar 

  • Glockner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65(8):3721–3726

    PubMed  CAS  Google Scholar 

  • Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63(7):2802–2813

    PubMed  CAS  Google Scholar 

  • Harrison PJ, Waters RE, Taylor FJR (1980) A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J Phycol 16(1):28–35

    Google Scholar 

  • Hasegawa Y, Martin JL, Giewat MW, Rooney-Varga JN (2007) Microbial community diversity in the phycosphere of natural populations of the toxic alga Alexandrium fundyense. Environ Microbiol 9(12):3108–3121

    Article  PubMed  CAS  Google Scholar 

  • Hold GL, Smith EA, Rappé MS, Maas EW, Moore ERB, Stroempl C, Stephen JR, Prosser JI, Birkbeck TH, Gallacher S (2001) Characterisation of bacterial communities associated with toxic and non-toxic dinoflagellates: Alexandrium spp. and Scrippsiella trochoidea. FEMS Microbiol Ecol 37(2):161–173

    Article  CAS  Google Scholar 

  • Hu Y, Fu C, Yin Y, Cheng G, Lei F, Yang X, Li J, Ashforth EJ, Zhang L, Zhu B (2010) Construction and preliminary analysis of a deep-sea sediment metagenomic fosmid library from Qiongdongnan Basin South China Sea. Mar Biotechnol 12(6):719–727

    Article  PubMed  CAS  Google Scholar 

  • Kodama M, Doucette GJ, Green DH (2006) Relationships between bacteria and harmful algae. In: Granéli E, Turner J (eds) Ecology of Harmful Algae Ecological Studies, vol 189. Springer Berlin Heidelberg, New York, pp 243–255

    Chapter  Google Scholar 

  • König E, Schlesner H, Hirsch P (1984) Cell wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138:200–205

    Article  Google Scholar 

  • Lachnit T, Meske D, Wahl M, Harder T, Schmitz R (2011) Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ Microbiol 13(3):655–665

    Article  PubMed  Google Scholar 

  • Lafay B, Ruimy R, de Traubenberg CR, Breittmayer V, Gauthier MJ, Christen R (1995) Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int J Syst Bacteriol 45(2):290–296

    Article  PubMed  CAS  Google Scholar 

  • Lage OM, Bondoso J (2011) Planctomycetes diversity associated with macroalgae. FEMS Microbiol Ecol 78(2):366–375

    Article  PubMed  CAS  Google Scholar 

  • Lage OM, Bondoso J, Viana F (2012) Isolation and characterization of Planctomycetes from the sediments of a fish farm wastewater treatment tank. Arch Microbiol 194(10):879–885

    Article  PubMed  CAS  Google Scholar 

  • Lage OM, Bondoso J, Lobo-da-Cunha A (2013) Insights into the ultrastructural morphology of novel Planctomycetes. Anto Leeuw. doi:10.1007/s10482-013-9969-2

    Google Scholar 

  • Lee SY, Bollinger J, Bezdicek D, Ogram A (1996) Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl Environ Microbiol 62(10):3787–3793

    PubMed  CAS  Google Scholar 

  • Liesack W, Stackebrandt E (1992) Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174(15):5072–5078

    PubMed  CAS  Google Scholar 

  • Liesack W, König E, Schlesner H, Hirsch P (1986) Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the Pirella/Planctomyces group. Arch Microbiol 145:361–366

    Article  CAS  Google Scholar 

  • Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in planctomycete bacteria of the genus Pirellula. Microbiology 143:739–748

    Article  CAS  Google Scholar 

  • Lindsay MR, Webb RI, Strous M, Jetten MSM, Butler MK, Forde RJ, Fuerst JA (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175(6):413–429

    Article  PubMed  CAS  Google Scholar 

  • Mayali X, Franks PJS, Burton RS (2011) Temporal attachment dynamics by distinct bacterial taxa during a dinoflagellate bloom. Aquat Microb Ecol 63(2):111–122

    Article  Google Scholar 

  • Miranda LN, Hutchison K, Grossman AR, Brawley SH (2013) Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae? PLoS ONE 8(3):e58269

    Article  PubMed  CAS  Google Scholar 

  • Morris RM, Longnecker K, Giovannoni SJ (2006) Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 8(8):1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom JEE, de Beer D, Dubilier N, Amann R (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin Wadden Sea. Syst Appl Microbiol 29(4):333–348

    Article  PubMed  Google Scholar 

  • Pimentel-Elardo S, Wehrl M, Friedrich AB, Jensen PR, Hentschel U (2003) Isolation of planctomycetes from Aplysina sponges. Aquat Microb Ecol 33:239–245

    Article  Google Scholar 

  • Prokic I, Brummer F, Brigge T, Gortz HD, Gerdts G, Schutt C, Elbrachter M, Muller WE (1998) Bacteria of the genus Roseobacter associated with the toxic dinoflagellate Prorocentrum lima. Protist 149(4):347–357

    Article  PubMed  CAS  Google Scholar 

  • Rausch de Traubenberg C, Lassus P (1991) Dinoflagellate toxicity: are marine bacteria involved? Evidence from the literature. Marine Microbial Food Webs 5:205–226

    Google Scholar 

  • Rusch A, Huettel M, Reimers CE, Taghon GL, Fuller CM (2003) Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands. FEMS Microbiol Ecol 44(1):89–100

    Article  PubMed  CAS  Google Scholar 

  • Ryter A, Kellenberger E (1958) Étude aux microscope électronique de plasmas contenent de l’acid désoxyribonucéique. I. Les nucléoïdes des bacteries en croissance actives. Z Naturforsch 13B:597–605

    CAS  Google Scholar 

  • Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj IW, Devos DP (2013) Three-dimensional reconstruction of bacteria with a complex Endomembrane system. PLoS Biol 11(5):e1001565

    Article  PubMed  CAS  Google Scholar 

  • Sapp M, Schwaderer AS, Wiltshire KH, Hoppe HG, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53(4):683–699

    Article  PubMed  Google Scholar 

  • Schlesner H (1994) The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17(1):135–145

    Article  Google Scholar 

  • Schmidt JM, Starr MP (1979) Morphotype V of the Blastocaulis-Planctomyces group of budding and appendaged bacteria: Planctomyces guttaeformis Hortobágyi (sensu Hajdu). Curr Microbiol 2:195–200

    Article  Google Scholar 

  • Silva MT (1984) The use of transmission electron microscopy of ultrathin sections for the characterization of the ultrastructure of normal and damaged bacterial membranes. In: Burton R, Guerra F (eds) Biomembranes, NATO ASI Series, vol 76. Springer, New York, pp 1–36

    Google Scholar 

  • Silva ES (1990) Intracellular bacteria: the origin of dinoflagellate toxicity. J Environ Pathol Toxicol Oncol 10(3):124–128

    PubMed  CAS  Google Scholar 

  • Speth DR, van Teeseling MC, Jetten MS (2012) Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in planctomycetes and verrucomicrobia. Front Microbiol 3:304

    PubMed  Google Scholar 

  • Spurr AP (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastruture Resolution 26:31–43

    Article  CAS  Google Scholar 

  • Stackebrandt E, Wehmeyer U, Liesack W (1986) 16S ribosomal RNA- and cell wall analysis of Gemmata obscuriglobus, a new member of the order Planctomycetales. FEMS Microbiol Lett 37:289–292

    Article  CAS  Google Scholar 

  • Starr MP, Short KA, Schmidt JM (1984) Exclusion of the filamentous and rosette-forming bacterium “Planctomyces gracilis” Hortobiigyi 1965 from the Blastocaulis-Planctomyces group. Int J Bact 34:465–469

    Article  Google Scholar 

  • Tekniepe BL, Schmid M, Starr MP (1981) Life cycle of a budding and appendage bacterium belonging to morphotype IV of the Blastocaulis-Planctomyces group. Curr Microbiol 5:1–6

    Article  Google Scholar 

  • Thiéry JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. Journal of Microscopie 6:987–1018

    Google Scholar 

  • van Niftrik L, Geerts WJ, van Donselaar EG, Humbel BM, Webb RI, Harhangi HR, Camp HJ, Fuerst JA, Verkleij AJ, Jetten MS, Strous M (2009) Cell division ring, a new cell division protein and vertical inheritance of a bacterial organelle in anammox planctomycetes. Mol Microbiol 73(6):1009–1019

    Article  PubMed  Google Scholar 

  • Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17(3):241–249

    Article  PubMed  CAS  Google Scholar 

  • Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. nov. sp. nov: a chemolithotrohic nitrite-oxidizing bacterium. Arch Microbiol 144(1):1–7

    Article  Google Scholar 

  • Webster NS, Bourne D (2007) Bacterial community structure associated with the Antarctic soft coral. Alcyonium antarcticum. FEMS Microbiol Ecol 59(1):81–94

    Article  CAS  Google Scholar 

  • Zarda B, Hahn D, Chatzinotas A, Schönhuber W, Neef A, Amann RI, Zeyer J (1997) Analysis of bacterial community structure in bulk soil by in situ hybridization. Arch Microbiol 168(3):185–192

    Article  CAS  Google Scholar 

  • ZoBell CE (1946) Marine microbiology a monograph on hydrobacteriology. Chronica Botanica Co, Waltham

    Google Scholar 

Download references

Acknowledgments

I am grateful to Mrs M. Andrea Costa for excellent technical assistance and to Damien Devos for his encouragement and helpful comments. My special thoughts go to Ana Maria Parente, my supervisor during my PhD that shared with me the discovery of this fascinating group of bacteria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Maria Lage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10482_2013_9991_MOESM1_ESM.tif

Online resource 1 Cell section showing details of the cell envelope; (CW) cell wall, (CM) cytoplasmic membrane, (P) periplasm, (F) fimbriae

10482_2013_9991_MOESM2_ESM.tif

Online resource 2 Electron micrographs of thin sections of IP1 labeled after Thiéry procedure. (H) holdfast, (F) fimbriae, (Gl) glycogen-like reserve bodies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lage, O.M. Characterization of a planctomycete associated with the marine dinoflagellate Prorocentrum micans Her. Antonie van Leeuwenhoek 104, 499–508 (2013). https://doi.org/10.1007/s10482-013-9991-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9991-4

Keywords

Navigation