Skip to main content
Log in

Yeasts in malting, with special emphasis on Wickerhamomyces anomalus (synonym Pichia anomala)

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Malted barley is a major raw material of beer, as well as distilled spirits and several food products. The production of malt (malting) exploits the biochemical reactions of a natural process, grain germination. In addition to germinating grain, the malting process includes another metabolically active component: a diverse microbial community that includes various types of bacteria and fungi. Therefore, malting can be considered as a complex ecosystem involving two metabolically active groups. Yeasts and yeast-like fungi are an important part of this ecosystem, but previously the significance of yeasts in malting has been largely underestimated. Characterization and identification of yeasts in industrial processes revealed 25 ascomycetous yeasts belonging to 10 genera, and 18 basidiomycetous yeasts belonging to 7 genera. In addition, two ascomycetous yeast-like fungi belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Several ascomycetous yeast strains showed strong antagonistic activity against field and storage moulds, Wickerhamomyces anomalus (synonym Pichia anomala) being the most effective species. Malting studies revealed that W. anomalus VTT C-04565 effectively restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. In order to broaden the antimicrobial spectrum and to improve malt brewhouse performance, W. anomalus could be combined with other starter cultures such as Lactobacillus plantarum. Well-characterized microbial mixtures consisting of barley and malt-derived microbes open up several possibilities to improve malt properties and to ensure the safety of the malting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amaha M, Kitabatake K (1981) Gushing in beer. In: Pollock JRA (ed) Brewing science, vol 2. Academic Press, London, pp 457–489

    Google Scholar 

  • Angelino SAGF, Bol J (1990) Impact of microflora during storage and malting on malt properties. Raw materials and sweet wort production: Jean De Clerck Chair IV. Leuven, Belgium, pp 1–14

    Google Scholar 

  • Bamforth C, Barclay A (1993) Malting technology and the uses of malt. In: MacGregor A, Bhatty R (eds) Barley: chemistry and technology. American Association of Cereal Chemists, Inc., St Paul, MN, pp 297–354

    Google Scholar 

  • Birgisson H, Delgado O, Garcia Arroy L, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extromophiles 7:185–193

    CAS  Google Scholar 

  • Boekhout T, Robert V (eds) (2003) Yeasts in food, beneficial and detrimental aspects. Behr’s Verlag GmbH & Co., Hamburg, Germany 488 p

    Google Scholar 

  • Boivin P, Malanda M (1997) Improvement of malt quality and safety by adding starter culture during the malting process. Tech Q Master Brew Assoc Am 34:96–101

    Google Scholar 

  • Bol J, Huis in’T Veld J (1988) The occurrence of fungi on barley, in raw materials and in the malthouse: prevention and consequences of infection. Louvain Brew Lett 1:4–9

    Google Scholar 

  • Campbell I (2003) Wild yeasts in brewing and distilling. In: Priest FG, Campell I (eds) Brewing microbiology, 2nd edn. Chapman & Hall, London, pp 247–266

    Google Scholar 

  • Clarke J, Hill S (1981) Mycofloras of moist barley during sealed storage in farm and laboratory silos. Trans Br Mycol Soc 77:557–565

    Article  Google Scholar 

  • Daniel H-M, Meyer W (2003) Evaluation of ribosomal RNA and actin gene sequences for identification of ascomycetous yeasts. Int J Food Microbiol 86:61–78

    Article  CAS  PubMed  Google Scholar 

  • Davies N (2006) Malt and malt products. In: Bamforth C (ed) Brewing, new technologies. Woodhead Publishing Limited and CRC Press LLC, Cambridge, pp 68–101

    Chapter  Google Scholar 

  • Deak T (1991) Foodborne yeasts. Adv Appl Microbiol 36:179–278

    Article  CAS  PubMed  Google Scholar 

  • De Baets S, Du Laing S, Vandamme E (2002) Yeast extracellular polysaccharides. In: De Baets S, Vandamme E, Steinbüchel A (eds) Biopolymers, polysaccharides II. Polysaccharides from eukaryotes, vol 6. Wiley-VCH Verlag, Weinheim, Germany, pp 93–116

    Google Scholar 

  • Demain A, Phaff H, Kurtzman C (1998) The industrial and agricultural significance of yeats. In: Kurtzman C, Fell J (eds) The yeasts, a taxonomic study. Elsevier Science B.V, Amsterdam, the Netherlands, pp 13–30

    Chapter  Google Scholar 

  • Douglas P, Flannigan B (1988) Microbiological evaluation of barley malt production. J Inst Brew 94:85–88

    Google Scholar 

  • Doran P, Briggs D (1993) Microbes and grain germination. J Inst Brew 99:165–170

    Google Scholar 

  • Druverfors U, Jonsson N, Boysen M, Schnürer J (2002) Efficacy of the biocontrol yeast Pichia anomala during long-term storage of moist feed grain under different oxygen and carbon dioxide regimes. FEMS Yeast Res 2:389–394

    Google Scholar 

  • Dziuba E, Foszcynska B (2001) Biological protection of barley grain and its influence on selected features of malt. Pol J Food Nutr Sci 10(51):49–53

    CAS  Google Scholar 

  • Ebbole D (1997) Hydrophobins and fungal infection of plants and animals. Trends Microbiol 5:405–408

    Article  CAS  PubMed  Google Scholar 

  • Euromalt Statistics (2008). http://www.coceral.com/cms/beitrag/10011989/248433. Accessed 13 Jun 2009

  • Fell J, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiveristy and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    CAS  PubMed  Google Scholar 

  • Flannigan B (1969) Microflora of dried barley grain. Trans Br Mycol Soc 53:371–379

    Article  Google Scholar 

  • Flannigan B (2003) The microbiota of barley and malt. In: Priest FG, Campell I (eds) Brewing microbiology, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 113–180

    Google Scholar 

  • Flannigan B, Dickie N (1972) Distribution of microorganisms in fractions produced during pearling of barley. Trans Br Mycol Soc 59:377–391

    Article  Google Scholar 

  • Flannigan B, Okagbue R, Khalid R, Teoh C (1982) Mould flora of malt in production and storage. Brew Distill Int 12:31–33 37

    Google Scholar 

  • Fleet G (1992) Spoilage yeasts. Crit Rev Biotechnol 12:1–44

    Article  CAS  PubMed  Google Scholar 

  • Fredlund E, Ädel Druvefors U, Nilsson Olstorpe M, Passoth V, Schnürer J (2004) Influence of ethyl acetate production and ploidy on the anti-mould activity of Pichia anomala. FEMS Microbiol Lett 238:133–137

    CAS  PubMed  Google Scholar 

  • Haikara A, Mäkinen V, Hakulinen R (1977) On the microflora of barley after harvesting, during storage and in malting. In: Proceedings of the European Brewery Convention Congress, Amsterdam. IRL Press, Oxford, pp 35–46

  • Hammes W, Brandt M, Francis K, Rosenheim J, Seitter M, Vogelmann S (2005) Microbial ecology of cereal fermentations. Trends Food Sci Technol 16:4–11

    Article  CAS  Google Scholar 

  • Horn B (1984) Association of Candida guilliermondii with amylolytic filamentous fungi on preharvest corn. Can J Microbiol 31:19–23

    Article  Google Scholar 

  • Janisiewicz W, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    Article  CAS  PubMed  Google Scholar 

  • Kottheimer J, Christensen C (1961) Microflora of barley kernels. Wallerstein Lab Commun 24:21–27

    Google Scholar 

  • Koizumi H (2008) Barley malt polysaccharides inducing premature yeast flocculation and their possible mechanism. J Am Soc Brew Chem 66:137–142

    CAS  Google Scholar 

  • Kreisz S, Wagner F, Back W (2001) The influence of polysaccharides from yeast and bacteria on the filterability of wort and beer. In: Proceedings of European Brewing Convention (Budabest), pp 1–9

  • Kurtzman C (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman C, Robnett C (1998) Identification and phylogeny of ascomycetous yeasts for analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman C, Robnett C (2003) Phylogenetic relationship among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analysis. FEMS Yeast Res 3:417–432

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman C, Robnett C, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen.nov., Lindera gen.nov. and Wickerhamomyces gen.nov. FEMS Yeast Res 8:939–954

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman C, Suzuki M (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces and Scheffersomyces. Mycoscience 51:2–14

    Article  CAS  Google Scholar 

  • Laitila A, Schmedding D, van Gestel M, Vlegels P, Haikara A (1999) Lactic acid starter cultures in malting-an application for prevention of wort filtration problems caused by bacteria in barley containing split barley kernels. In: Proceedings of the European brewery convention congress, Caen 1999. Oxford University Press, UK, pp 559–566

  • Laitila A, Sweins H, Vilpola A, Kotaviita E, Olkku J, Home S, Haikara A (2006a) Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt processability. J Agric Food Chem 54:3840–3851

    Article  CAS  PubMed  Google Scholar 

  • Laitila A, Wilhelmson A, Kotaviita E, Olkku J, Home S, Juvonen R (2006b) Yeasts in an industrial malting ecosystem. J Int Microbiol Biotechnol 33:953–966

    Article  CAS  Google Scholar 

  • Laitila A, Kotaviita E, Peltola P, Home S, Wilhelmson A (2007a) Indigenous microbial community of barley greatly influences grain germination and malt quality. J Inst Brew 113:9–20

    CAS  Google Scholar 

  • Laitila A, Sarlin T, Kotaviita E, Huttunen T, Home S, Wilhelmson A (2007b) Yeasts isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. J Ind Microbiol Biotechnol 34:701–713

    Article  CAS  PubMed  Google Scholar 

  • Laitila A (2008) More good than bad-microbes in the maltings. Brew Distill Int 4:52–54

    Google Scholar 

  • Linder M, Szilvay G, Nakari-Setälä T, Penttilä M (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    Article  CAS  PubMed  Google Scholar 

  • Loureiro V (2000) Spoilage yeasts in foods and beverages. Food Res Int 33:247–256

    Article  Google Scholar 

  • Lowe D, Arendt E (2004) The use and effects of lactic acid bacteria in malting and brewing with their relationships to antifungal activity, mycotoxins and gushing: a review. J Inst Brew 110:163–180

    CAS  Google Scholar 

  • Masih E, Paul P (2002) Secretion of β-glucanase by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Curr Microbiol 44:391–395

    Article  CAS  PubMed  Google Scholar 

  • Munar M, Sebree B (1997) Gushing-a maltster’s view. J Am Soc Brew Chem 55:119–122

    CAS  Google Scholar 

  • Nichols A, Leaver C (1961) Methods of examining damp grain at harvest and after sealed and open storage: changes in the microflora of damp grain during sealed storage. J Appl Bacteriol 29:566–581

    Google Scholar 

  • Niessen L, Hecht D, Theisen S, Vogel R, Elstner E, Hippeli S (2007) On the relevance of surface active proteins of plants and fungi during the formation of gushing and possible exertion of influence. Brauwelt Int 1:44–46

    Google Scholar 

  • Noots I, Delcour J, Michiels C (1999) From field barley to malt: detection and specification of microbial activity for quality aspects. Critic Rev Microbiol 25:121–153

    Article  CAS  Google Scholar 

  • Olstorpe M, Borling J, Schnürer J, Passoth V (2010) The biocontrol yeast Pichia anomala improves feed hygiene during storage of moist crimped cereal grain under Swedish farm conditions. Anim Feed Sci Tech 156:47–56

    Article  Google Scholar 

  • O’Sullivan T, Walsh Y, O’Mahony A, Fitzgerald G, van Sinderen D (1999) A comparative study of malthouse and brewhouse microflora. J Inst Brew 105:55–61

    Google Scholar 

  • Passoth V, Schnürer J (2003) Non-conventional yeasts in antifungal application. In: de Winde H (ed) Functional genetics in industrial yeasts. Springer-Verlag, Berlin, pp 297–330

    Chapter  Google Scholar 

  • Passoth V, Fredlund E, Druvefors U, Schnürer J (2005) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res 6:3–13

    Article  Google Scholar 

  • Petters H, Flannigan B, Austin B (1988) Quantitative and qualitative studies of the microflora of barley malt production. J Appl Bacteriol 65:279–297

    Google Scholar 

  • Raulio M, Wilhelmson A, Salkinoja-Salonen M, Laitila A (2009) Ultrastructure of biofilms formed on barley kernels during malting with and without starter culture. Food Microbiol 26:437–443

    Article  CAS  PubMed  Google Scholar 

  • Saligkarias I, Gravanis F, Epton H (2002) Biological control of Botrytis cinerea on tomato plants by the use of epiphytic Candida guilliermondii strains 101 and US7 and Candida oleophila strain I-182: II. A study on mode of action. Biol Cont 25:151–161

    Article  CAS  Google Scholar 

  • Sarlin T, Laitila A, Pekkarinen A, Haikara A (2005a) Effects of three Fusarium species on the quality of barley and malt. J Am Soc Brew Chem 63:43–49

    CAS  Google Scholar 

  • Sarlin T, Nakari-Setälä T, Linder M, Penttilä M, Haikara A (2005b) Fungal hydrophobins as predictors of the gushing activity of malt. J Inst Brew 111:105–111

    CAS  Google Scholar 

  • Sarlin T, Vilpola A, Kotaviita E, Olkku J, Haikara A (2007) Fungal hydrophobins in the barley-to-beer chain. J Inst Brew 113:147–153

    CAS  Google Scholar 

  • Schena L, Nigro F, Pentimone I, Ligorio A, Ippolito A (2003) Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol 30:209–220

    Article  Google Scholar 

  • Schwarz P, Casper H, Beattie S (1995) Fate and development of naturally occurring Fusarium mycotoxins during malting and brewing. J Am Soc Brew Chem 53:121–127

    CAS  Google Scholar 

  • Schwarz P, Beattie S, Casper H (1996) Relationship between Fusarium infestation of barley and the gushing potential of malt. J Inst Brew 102:93–96

    Google Scholar 

  • Schwarz P, Jones B, Steffenson B (2002) Enzymes associated with Fusarium infection of barley. J Am Soc Brew Chem 60:130–134

    CAS  Google Scholar 

  • Sponholz W-R (1993) Wine spoilage by microorganisms. In: Fleet G (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, Swizerland, pp 395–420

    Google Scholar 

  • Steinkraus K (1998) Bio-enrichment: production of vitamins in fermented foods. In: Wood B (ed) Microbiology of fermented foods. Blackie Academic and Professional, London, pp 603–621

    Google Scholar 

  • Strauss M, Jolly N, Lambrechts M, van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J Appl Microbiol 91:182–190

    Article  CAS  PubMed  Google Scholar 

  • Tuomi T, Laakso S, Rosenqvist H (1995) Plant hormones in fungi and bacteria from malting barley. J Inst Brew 101:351–357

    CAS  Google Scholar 

  • Tuomi T, Rosenqvist H (1995) Annual variation in the microflora of some varieties of Finnish malting barley. Agric Sci Finland 4:407–418

    Google Scholar 

  • van Nierop S, Cameron-Clarke A, Axcell B (2004) Enzymatic generation of factors from malt responsible for premature yeast flocculation. J Am Soc Brew Chem 63:108–116

    Google Scholar 

  • Van Nierop S, Rautenbach M, Axcell B, Cantrell I (2006) The impact of microorganisms on barley and malt-a review. J Am Soc Brew Chem 64:69–78

    Google Scholar 

  • Vaughan A, O’Sullivan T, van Sinderen D (2006) Enhancing the microbiological stability of malt and beer-a review. J Inst Brew 111:355–371

    Google Scholar 

  • Wessels J (1997) Hydrophobins: proteins that change the nature of the fungal surface. In: Poole RK (ed) Advances in microbial physiology. Academic Press, London, pp 1–45

    Google Scholar 

  • Wisniewski M, Biles C, Droby S, McLaughlin R, Wilson C, Chalutz E (1991) Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. I Characterization of attachment to Botrytis cinerea. Physiol Mol Plant Pathol 39:245–258

    Article  CAS  Google Scholar 

  • Wuczkowski M, Passoth V, Turchetti B, Andersson A-C, Olstorpe M, Laitila A, Theelen B, van Broock M, Buzzini P, Prillinger H, Sterflinger K, Schnürer J, Boekhout T, Libkind D (2010) Description of Holtermanniella takashimae sp. nov., Holtermanniella gen. nov. and the new order Holtermanniales to accommodate Tremellomycetous yeasts of the Holtermannia clade. IJSEM (in press). doi:10.1099/ijs.0.019737-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arja Laitila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laitila, A., Sarlin, T., Raulio, M. et al. Yeasts in malting, with special emphasis on Wickerhamomyces anomalus (synonym Pichia anomala). Antonie van Leeuwenhoek 99, 75–84 (2011). https://doi.org/10.1007/s10482-010-9511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9511-8

Keywords

Navigation