Skip to main content
Log in

The algebra of reversible Markov chains

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

For a Markov chain, both the detailed balance condition and the cycle Kolmogorov condition are algebraic binomials. This remark suggests to study reversible Markov chains with the tool of Algebraic Statistics, such as toric statistical models. One of the results of this study is an algebraic parameterization of reversible Markov transitions and their invariant probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bigatti, A., Robbiano, L. (2001). Toric ideals. Matemática Contemporânea, 21, pp. 1–25. 16th School of Algebra, Part II (Portuguese) (Brasília, 2000).

  • Bollobás, B. (1998). Modern graph theory. In: Graduate Texts in Mathematics, vol. 184. New York: Springer.

  • CoCoATeam (online). CoCo: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it.

  • Cox, D., Little, J., O’Shea, D. (1997). Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra, 2nd edn. In: Undergraduate Texts in Mathematics. New York: Springer.

  • DeLoera J. A., Hemmecke R., Onn S., Weismantel R. (2008) n-fold integer programming. Discrete Optimization. The Journal of Combinatorial Operations Research 5: 231–241

    MathSciNet  Google Scholar 

  • Diaconis P., RollesS. W. W. (2006) Bayesian analysis for reversible Markov chains. The Annals of Statistics, 34: 1270–1292

    Article  MathSciNet  MATH  Google Scholar 

  • Diaconis P., Sturmfels B. (1998) Algebraic algorithms for sampling from conditional distributions. The Annals of Statistics, 26: 363–397

    Article  MathSciNet  MATH  Google Scholar 

  • Dobrushin R. L., Sukhov Y. M., Fritts Ĭ. (1988) A. N. Kolmogorov—founder of the theory of reversible Markov processes. Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 43: 167–188

    Google Scholar 

  • Drton, M., Sturmfels, B., Sullivant, S. (2009). Lectures on algebraic statistics. In: Oberwolfach Seminars, vol. 39. Basel: Birkhäuser Verlag.

  • Geiger D., Meek C., Sturmfels B. (2006) On the toric algebra of graphical models. The Annals of Statistics 34: 1463–1492

    Article  MathSciNet  MATH  Google Scholar 

  • Gibilisco, P., Riccomagno, E., Rogantin, M. P., Wynn, H. P. (eds) (2010). Algebraic and geometric methods in statistics. Cambridge: Cambridge University Press.

  • Hastings W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109

    Article  Google Scholar 

  • Kelly, F. P. (1979). Reversibility and stochastic networks. Wiley Series in Probability and Mathematical Statistics. Chichester: Wiley.

  • Kreuzer M., Robbiano L. (2000) Computational commutative algebra. 1. Springer, Berlin

    Book  Google Scholar 

  • Liu J. S. (2008) Monte Carlo strategies in scientific computing. Springer Series in Statistics. Springer, New York

    Google Scholar 

  • Malagò, L., Pistone, G. (2010). A note on the border of an exponential family. ArXiv:1012.0637v1.

  • Mitrophanov A. Y. (2004) Reversible Markov chains and spanning trees. The Mathematical Scientist 29: 107–114

    MathSciNet  Google Scholar 

  • Onn, S. (2011). Theory and Applications of n-fold Integer Programming. In: Mixed integer non-linear programming, no. 154 in Frontier Science, (pp. 559–593). IMA.

  • Peskun P. H. (1973) Optimum Monte-Carlo sampling using Markov chains. Biometrika 60: 607–612

    Article  MathSciNet  Google Scholar 

  • Pistone, G., Riccomagno, E., Wynn, H. P. (2001). Algebraic statistics: Computational commutative algebra in statistics. In: Monographs on Statistics and Applied Probability, vol. 89. Boca Raton, FL: Chapman & Hall/CRC.

  • Rauh, J., Kahle, T., Ay, N. (2011). Support sets in exponential families and oriented matroid theory. International Journal of Approximate Reasonoing, 52, 613–626. Special Issue Workshop on Uncertainty Processing WUPES09.

    Google Scholar 

  • Strook, D. W. (2005). An Introduction to Markov Processes. In: Graduate Texts in Mathematics, No. 230. Berlin: Springer.

  • Sturmfels, B. (1996). Gröbner bases and convex polytopes. Providence, RI: American Mathematical Society.

  • Suomela P. (1979) Invariant measures of time-reversible Markov chains. Journal of Applied Probability 16: 226–229

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pistone.

Additional information

G. Pistone was supported by de Castro Statistics Initiative, Collegio Carlo Alberto, Moncalieri, Italy.

About this article

Cite this article

Pistone, G., Rogantin, M.P. The algebra of reversible Markov chains. Ann Inst Stat Math 65, 269–293 (2013). https://doi.org/10.1007/s10463-012-0368-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-012-0368-7

Keywords

Navigation