Skip to main content

Advertisement

Log in

Neuropilin-2 and vascular endothelial growth factor receptor-3 are up-regulated in human vascular malformations

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Despite multiple previous studies in the field of vascular anomalies, the mechanism(s) leading to their development, progression and maintenance has remained unclear. In this study, we have characterized the expression levels of vascular endothelial growth factors and their receptors in 33 human vascular anomalies. Analysis with quantitative real-time PCR and gene-specific assays showed higher expression of neuropilin-2 (NRP2) and VEGF-receptor-3 (VEGFR-3) mRNAs in vascular malformations (VascM) as compared to infantile hemangiomas (Hem). In addition, the expression levels of PlGF and VEGF-C mRNA were significantly higher in venous VascM when compared to the other VascM and Hem. Higher expression of NRP2 and VEGFR-3 were confirmed by immunohistochemistry. To further study the importance of NRP2 and VEGFR-3, endothelial cell (EC) cultures were established from vascular anomalies. It was found that NRP2 and VEGFR-3 mRNA levels were significantly higher in some of the VascM ECs as compared to human umbilical vein ECs which were used as control cells in the study. Furthermore, adenoviral delivery of soluble decoy NRP2 prevented the proliferation of ECs isolated from most of the vascular anomalies. Our findings suggest that NRP2 functions as a factor maintaining the pathological vascular network in these anomalies. Thus, NRP2 could become a potential therapeutic target for the diagnosis and treatment of vascular anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mulliken JB, Glowacki J (1982) Classification of paediatric vascular lesions. Plast Reconstr Surg 70:120–121

    Article  PubMed  CAS  Google Scholar 

  2. Boye E, Olsen BR (2009) Signaling mechanisms in infantile hemangioma. Curr Opin Hematol 16:202–208

    Article  PubMed  Google Scholar 

  3. Limaye N, Boon LM, Vikkula M (2009) From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum Mol Genet 18:R65–R74

    Article  PubMed  CAS  Google Scholar 

  4. Roy H, Bhardwaj S, Yla-Herttuala S (2006) Biology of vascular endothelial growth factors. FEBS Lett 580:2879–2887

    Article  PubMed  CAS  Google Scholar 

  5. Zhang L, Lin X, Wang W, Zhuang X, Dong J, Qi Z, Hu Q (2005) Circulating level of vascular endothelial growth factor in differentiating hemangioma from vascular malformation patients. Plast Reconstr Surg 116:200–204

    Article  PubMed  CAS  Google Scholar 

  6. Przewratil P, Sitkiewicz A, Wyka K, Andrzejewska E (2009) Serum levels of vascular endothelial growth factor and basic fibroblastic growth factor in children with hemangiomas and vascular malformations–preliminary report. Pediatr Dermatol 26:399–404

    Article  PubMed  Google Scholar 

  7. Walter JW, North PE, Waner M, Mizeracki A, Blei F, Walker JWT, Reinisch JF, Marchuk DA (2002) Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosomes Cancer 33:295–303

    Article  PubMed  CAS  Google Scholar 

  8. Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14:1236–1246

    Article  PubMed  CAS  Google Scholar 

  9. Lymboussaki A, Partanen TA, Olofsson B, Thomas-Crusells J, Fletcher JDM, Waal RMW, Kaipainen A, Alitalo K (1998) Expression of the vascular endothelial growth factor C receptor VEGFR-3 in lymphatic endothelium of the skin and in vascular tumors. Am J Pathol 153:395–403

    Article  PubMed  CAS  Google Scholar 

  10. Jussila L, Valtola R, Partanen TA, Salven P, Heikkilä P, Matikainen MT, Renkonen R, Kaipainen A, Detmar M, Tschachler E, Alitalo R, Alitalo K (1998) Lymphatic endothelium and Kaposi’s sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor 3. Cancer Res 58:1599–1604

    PubMed  CAS  Google Scholar 

  11. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  PubMed  CAS  Google Scholar 

  12. Rossignol M, Gagnon ML, Klagsbrun M (2000) Genomic organization of human neuropilin-1 and neuropilin-2 genes: identification and distribution of splice variants and soluble isoforms. Genomics 70:211–222

    Article  PubMed  CAS  Google Scholar 

  13. Sallinen H, Anttila M, Narvainen J, Koponen J, Hamalainen K, Kholova I, Heikura T, Toivanen P, Kosma VM, Heinonen S, Alitalo K, Yla-Herttuala S (2009) Antiangiogenic gene therapy with soluble VEGFR-1, -2, and -3 reduces the growth of solid human ovarian carcinoma in mice. Mol Ther 17:278–284

    Article  PubMed  CAS  Google Scholar 

  14. Laitinen M, Makinen K, Manninen H, Matsi P, Kossila M, Agrawal RS, Pakkanen T, Luoma JS, Viita H, Hartikainen J, Alhava E, Laakso M, Ylä-Herttuala S (1998) Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. Hum Gene Ther 9:1481–1486

    Article  PubMed  CAS  Google Scholar 

  15. Puumalainen AM, Vapalahti M, Agrawal RS, Kossila M, Laukkanen J, Lehtolainen P, Viita H, Paljärvi L, Vanninen R, Ylä-Herttuala S (1998) Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Hum Gene Ther 9:1769–1774

    Article  PubMed  CAS  Google Scholar 

  16. Lu L, Bischoff J, Mulliken JB, Bielenberg DR, Fishman SJ, Greene AK (2011) Increased endothelial cells and vasculogenic factors in higher-staged arteriovenous malformations. Plast Reconstr Surg 128:260e–269e

    Article  PubMed  CAS  Google Scholar 

  17. Staton CA, Kumar I, Reed MW, Brown NJ (2007) Neuropilins in physiological and pathological angiogenesis. J Pathol 212:237–248

    Article  PubMed  CAS  Google Scholar 

  18. Pellet-Many C, Frankel P, Jia H, Zachary I (2008) Neuropilins: structure, function and role in disease. Biochem J 411:211–226

    Article  PubMed  CAS  Google Scholar 

  19. Karpanen T, Heckman CA, Keskitalo S, Jeltsch M, Ollila H, Neufeld G, Tamagnone L, Alitalo K (2006) Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J 20:1462–1472

    Article  PubMed  CAS  Google Scholar 

  20. Gray MJ, van Buren G, Dallas NA, Xia L, Wang X, Yang AD, Somcio RJ, Lin YG, Lim S, Fan F, Mangala LS, Arumugam T, Logsdon CD, Lopez-Berestein G, Sood AK, Ellis LM (2008) Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst 100:109–120

    Article  PubMed  CAS  Google Scholar 

  21. Dallas NA, Gray MJ, Xia L, Fan F, van Buren G, Gaur P, Samuel S, Lim SJ, Arumugam T, Ramachandran V, Wang H, Ellis LM (2008) Neuropilin-2-mediated tumor growth and angiogenesis in pancreatic adenocarcinoma. Clin Cancer Res 14:8052–8060

    Article  PubMed  CAS  Google Scholar 

  22. Kim WH, Lee SH, Jung MH, Seo JH, Kim J, Kim MA, Lee YM (2009) Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF. Exp Cell Res 315:2154–2164

    Article  PubMed  CAS  Google Scholar 

  23. Geretti E, Klagsbrun M (2007) Neuropilins: novel targets for anti-angiogenesis therapies. Cell Adh Migr 1:56–61

    Article  PubMed  Google Scholar 

  24. Gokani VJ, Kangesu L, Harper J, Sebire NJ (2011) Venous malformation associated nerve profiles and pain: an immunohistochemical study. J Plast Reconstr Aesthet Surg 64:439–444

    Article  PubMed  CAS  Google Scholar 

  25. Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–1425

    Article  PubMed  CAS  Google Scholar 

  26. Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, Stacker SA, Achen MG, Alitalo K (2000) VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissue. FASEB J 14:2087–2096

    Article  PubMed  CAS  Google Scholar 

  27. Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivee B, del Toro R, Suchting S, Medvinsky A, Silva J, Yang J, Thomas JL, Koch AW, Alitalo K, Eichmann A, Bagri A (2010) Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 188:115–130

    Article  PubMed  CAS  Google Scholar 

  28. Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P, Hicklin D, Persaud K, Tonra JR, Witte L, Alitalo K (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67:593–599

    Article  PubMed  CAS  Google Scholar 

  29. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660

    Article  PubMed  CAS  Google Scholar 

  30. Goel HL, Bae D, Pursell B, Gouvin LM, Lu S, Mercurio AM (2011) Neuropilin-2 promotes branching morphogenesis in the mouse mammary gland. Development 138:2969–2976

    Article  PubMed  CAS  Google Scholar 

  31. Hillman RT, Feng BY, Ni J, Woo WM, Milenkovic L, Hayden Gephard MG, Teruel MN, Oro AE, Chen JK, Scott MP (2011) Neuropilins are positive regulators of hedgehog signal transduction. Genes Dev 25:2333–2346

    Article  PubMed  CAS  Google Scholar 

  32. Partanen TA, Alitalo K, Miettinen M (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86:2406–2412

    Article  PubMed  CAS  Google Scholar 

  33. Frischer JS, Huang J, Serur A, Kadenhe A, Yamashiro DJ, Kandel JJ (2004) Biomolecular markers and involution of hemangiomas. J Pediatr Surg 39:400–404

    Article  PubMed  Google Scholar 

  34. Zhao B, Cai J, Boulton M (2004) Expression of placenta growth factor is regulated by both VEGF and hyperglycaemia via VEGFR-2. Microvasc Res 68:239–246

    Article  PubMed  CAS  Google Scholar 

  35. Roy H, Bhardwaj S, Babu M, Jauhiainen S, Herzig KH, Bellu AR, Haisma HJ, Carmeliet P, Alitalo K, Ylä-Herttuala S (2005) Adenovirus-mediated gene transfer of placental growth factor to perivascular tissue induces angiogenesis via upregulation of the expression of endogenous vascular endothelial growth factor-A. Hum Gene Ther 16:1422–1428

    Article  PubMed  CAS  Google Scholar 

  36. Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269:25646–25654

    PubMed  CAS  Google Scholar 

  37. Cao Y, Chen H, Zhou L, Chiang MK, Anand-Apte B, Weatherbee JA, Wang Y, Fang F, Flanagan JG, Tsang ML (1996) Heterodimers of placenta growth factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR. J Biol Chem 271:3154–3162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Finnish Academy, Antti and Tyyne Soininen Foundation and Kuopio University Foundation. We thank Seija Sahrio for technical assistance in immunohistochemistry, Sari Järveläinen and Tiina Koponen for preparing adenoviral vectors, and Dr. Johanna Lähteenvuo for invaluable advises in endothelial cell isolation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo Ylä-Herttuala.

Additional information

Taina A. Partanen, Pia Vuola and Suvi Jauhiainen contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partanen, T.A., Vuola, P., Jauhiainen, S. et al. Neuropilin-2 and vascular endothelial growth factor receptor-3 are up-regulated in human vascular malformations. Angiogenesis 16, 137–146 (2013). https://doi.org/10.1007/s10456-012-9305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9305-x

Keywords

Navigation