Skip to main content

Advertisement

Log in

Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Inhibition of angiogenesis has become a major target in experimental cancer therapies. Vascular endothelial growth factor (VEGF) and its receptors are essential for breast cancer progression and relevant targets in experimental anti-angiogenesis. VEGF, produced by carcinoma cells, acts in a paracrine fashion on endothelial cells and displays autocrine activity on carcinoma cells. Breast cancer cells express VEGF-A, VEGF-B, VEGF-C and their receptors VEGFR-1 (Flt-1), VEGFR-2 (Flk-1/KDR) and neuropilin (NP-1/NP-2). VEGF-A triggers cellular signalling, an invasive phenotype of certain breast cancer cell lines and influences cell survival. However, such an autocrine VEGF/VEGFR signalling loop remains to be established. We demonstrate production of VEGF-A in cell lines MDA-MB-468, T47d, MCF-7, HBL-100 and in a primary breast cancer culture. Moreover, these cells showed baseline VEGFR-2 tyrosine-phosphorylation that could be enhanced by VEGF-A stimulation. In addition, VEGF-A leads to increased phosphorylation of ERK1/2 and Akt indicating that VEGF-A stimulation plays a crucial role in the regulation of cell growth, apoptosis, survival and differentiation. Moreover, we have established a novel breast cancer cell culture MW1 that expresses high levels of VEGF-A. We demonstrate that VEGFR-2 on the surface of breast cancer cells is functional and is capable of being stimulated by external VEGF-A. VEGF-A production by and VEGFR-2 activation on the surface of breast cancer cells indicates the presence of a distinct autocrine signalling loop that enables breast cancer cells to promote their own growth and survival by phosphorylation and activation of VEGFR-2. Moreover, this autocrine loop represents an attractive therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATCC:

American Type Culture Collection

EGFR:

epidermal growth factor receptor

IGFR:

insulin-like growth factor receptor

PI3-kinase:

phosphatidylinositol 3′-kinase

VEGF:

vascular endothelial growth factor

VEGFR:

vascular endothelial growth factor receptor

References

  1. 1. McCarthy M (2003) Antiangiogenesis drug promising for metastatic colorectal cancer. Lancet 361(9373): 1959

    Article  PubMed  Google Scholar 

  2. 2. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–7

    Article  PubMed  CAS  Google Scholar 

  3. 3. Morgan B, Thomas AL, Drevs J, Hennig J, Buchert M, Jivan A, Horsfield MA, Mross K, Ball HA, Lee L, Mietlowski W, Fuxuis S, et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: Results from two phase I studies. J Clin Oncol 21(21):3955–64

    Article  PubMed  CAS  Google Scholar 

  4. 4. Linderholm BK, Lindh B, Beckman L, Erlanson M, Edin K, Travelin B, Bergh J, Grankvist K, Henriksson R (2003) Prognostic correlation of basic fibroblast growth factor and vascular endothelial growth factor in 1307 primary breast cancers. Clin Breast Cancer 4(5):340–7

    PubMed  CAS  Google Scholar 

  5. 5. Stimpfl M, Tong D, Fasching B, Schuster E, Obermair A, Loedolter S, Zeillinger R (2002) Vascular endothelial growth factor splice variants and their prognostic value in breast and ovarian cancer. Clin Cancer Res 8(7):2253–9

    PubMed  CAS  Google Scholar 

  6. 6. Yoshiji H, Gomez DE, Shibuya M, Thorgeirsson UP (1996) Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer. Cancer Res 56(9):2013–6

    PubMed  CAS  Google Scholar 

  7. 7. Cohen T, Gitay-Goren H, Sharon R, Shibuya M, Halaban R, Levi BZ, Neufeld G (1995) VEGF121, a vascular endothelial growth factor isoform lacking heparin binding ability, requires cell-surface heparin sulphates for efficient binding to the VEGF receptors of human melanoma cells. J Biol Chem 270(19):11322–6

    Article  PubMed  CAS  Google Scholar 

  8. 8. Liu B, Earl HM, Baban D, Shoaibi M, Fabra A, Kerr DJ, Seymour LW (1995); Melanoma cell lines express VEGF receptor KDR and respond to exogenously added VEGF. Biochem Biophys Res Commun 217(3):721–7

    Article  PubMed  CAS  Google Scholar 

  9. 9. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, Wu Y, Chadburn A, Hyjek E, Gill M, Hicklin DJ, Witte L, et al (2000) Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 106(4):511–21

    Article  PubMed  CAS  Google Scholar 

  10. 10. Qi L, Robinson WA, Brady BM, Glode LM (2003) Migration and invasion of human prostate carcinoma cells is related to expression of VEGF and its receptors. Anticancer Res 23(5A):3917–22

    PubMed  CAS  Google Scholar 

  11. 11. Bates RC, Goldsmith JD, Bachelder RE, Brown C, Shibuya M, Oettgen P, Mercurio AM (2003) Flt-1-dependent survival characterizes the epithelial-mesenchymal transition of colonic organoids. Curr Biol 13(19):1721–7

    Article  PubMed  CAS  Google Scholar 

  12. 12. Wu W, Shu X, Hovsepyan H, Mosteller RD, Broek D (2003) VEGF receptor expression and signalling in human bladder tumors. Oncogene 22(22):3361–70

    Article  PubMed  CAS  Google Scholar 

  13. 13. De Jong JS, van Diest PJ, van der Valk P, Baak JP (1998) Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. J Pathol 184(1):53–7

    Article  PubMed  Google Scholar 

  14. 14. Speirs V, Atkin SL (1999) Production of VEGF and expression of the VEGF receptors Flt-1 and KDR in primary cultures of epithelial and stromal cells derived from breast tumours. Br J Cancer 80(5–6):898–903

    Article  PubMed  CAS  Google Scholar 

  15. 15. Kranz A, Mattfeldt T, Waltenberger J (1999) Molecular mediators of tumor angiogenesis: enhanced expression and activation of vascular endothelial growth factor receptor KDR in primary breast cancer. Int J Cancer 84(3):293–8

    Article  PubMed  CAS  Google Scholar 

  16. 16. Price DJ, Miralem T, Jiang S, Steinberg R, Avraham H (2001) Role of vascular endothelial growth factor in the stimulation of cellular invasion and signalling of breast cancer cells. Cell Growth Differ 12(3):129–35

    PubMed  CAS  Google Scholar 

  17. 17. Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G, Mercurio AM (2001) Vascular endothelial growth factor is an autocrine survival factor for Neuropilin-expressing breast carcinoma cells. Cancer Res 61(15):5736–40

    PubMed  CAS  Google Scholar 

  18. 18. Bachelder RE, Wendt MA, Mercurio AM (2002) Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62(24):7203–6

    PubMed  CAS  Google Scholar 

  19. 19. Bachelder RE, Lipscomb EA, Lin X, Wendt MA, Chadborn NH, Eickholt BJ, Mercurio AM (2003) Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Res 63(17):5230–3

    PubMed  CAS  Google Scholar 

  20. 20. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92(6):735–45

    Article  PubMed  CAS  Google Scholar 

  21. 21. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin C-H (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–95

    PubMed  CAS  Google Scholar 

  22. 22. Forozan F, Veldman R, Ammerman CA, Parsa NZ, Kallioniemi A, Kallioniemi OP, Ethier SP (1999) Molecular cytogenetic analysis of 11 new breast cancer cell lines. Br J Cancer 81(8):1328–34

    Article  PubMed  CAS  Google Scholar 

  23. 23. Kroll J, Waltenberger J (1997) The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 272(51):32521–7

    Article  PubMed  CAS  Google Scholar 

  24. 26. Cantley LC (2002) The phosphoinositide 3-kinase family. Science 296(5573):1655–7

    Article  PubMed  CAS  Google Scholar 

  25. 27. Craven RJ, Lightfoot H, Cance WG (2003) A decade of tyrosine kinases: from gene discovery to therapeutics. Surg Oncol 12(1):39–49

    Article  PubMed  Google Scholar 

  26. 28. Hazzalin CA, Mahadevan LC (2002) MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 3(1): 30–40

    Article  PubMed  CAS  Google Scholar 

  27. 29. Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W (2002) The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 80(2):239–56

    Article  PubMed  CAS  Google Scholar 

  28. 30. Von Lintig FC, Dreilinger AD, Varki NM, Wallace AM, Casteel DE, Boss GR (2000) Ras activation in human breast cancer. Breast Cancer Res Treat 62(1):51–62

    Article  PubMed  CAS  Google Scholar 

  29. 31. Tong D, Czerwenka K, Sedlak J, Schneeberger C, Schiebel I, Concin N, Leodolter S, Zeillinger R (1999) Association of in vitro invasiveness and gene expression of estrogen receptor, progesterone receptor, pS2 and plasminogen activator inhibitor-1 in human breast cancer cell lines. Breast Cancer Res Treat 56(1):91–7

    Article  PubMed  CAS  Google Scholar 

  30. 32. Nakopoulou L, Stefanaki K, Panayotopoulou E, Giannopoulou I, Athanassiadou P, Gakiopoulou-Givalou H, Louvrou A (2002) Expression of the vascular endothelial growth factor receptor-2/Flk-1 in breast carcinomas: correlation with proliferation. Hum Pathol 3(9):1061–3

    Google Scholar 

  31. 31. Speirs V, Green AR, Walton DS, Kerin MJ, Fox JN, Carleton PJ, Desai SB, Atkin SL (1998) Short-term primary culture of epithelial cells derived from human breast tumours. Br J Cancer 78(11):1421–9

    PubMed  CAS  Google Scholar 

  32. 32. Huh J-I, Calvo A, Stafford J, Cheung M, Kumar R, Philip D, Kleinman HK, Green JE (2004) Inhibition of VEGF receptors significantly impairs mammary cancer growth in C3(1)/Tag transgenic mice through antiangiogenic and non-antiangiogenic mechanisms. Oncogene 24(5):790–800

    Article  CAS  Google Scholar 

  33. Schoeffner DJ, Matheny SL, Akahane T et al. VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms. Lab Invest 2005; Mar 14 [Epub ahead of print]

Download references

Acknowledgements

We thank Stephanie Kliche, Guido Fellbrich, Lisa Wiesmüller, Shan Wang-Gorke as well as Ulrike Mayr-Beyrle, Stephen Ethier and Arthur Mercurio for valuable discussions and technical help. This study was supported in part by the Medical Faculty of the University of Ulm (to M.W.), by a Heisenberg Scholarship of the Deutsche Forschungsgemeinschaft (Wa734/5–1) and by a project grant of the Deutsche Forschungsgemeinschaft (priority research program ȁ8angiogenesisȁ9, Wa734/6–3) (both to J.W.).

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: Melanie Weigand, Department of Cancer Biology, University of Massachusetts Medical School, LRB-470X, 364 Plantation St, Worcester, MA, USA. Tel: +1-508-856-2579; Fax: +1-508-856-1310; E-Mail: melanie_weigand@hotmail.de

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigand, M., Hantel, P., Kreienberg, R. et al. Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro . Angiogenesis 8, 197–204 (2005). https://doi.org/10.1007/s10456-005-9010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9010-0

Keywords

Navigation