Skip to main content

Advertisement

Log in

In Vivo Validation of the In Silico Predicted Pressure Drop Across an Arteriovenous Fistula

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The creation of an arteriovenous fistula offers a unique example of vascular remodelling and adaption. Yet, the specific factors which elicit remodelling events which determine successful maturation or failure have not been unambiguously determined. Computational fluid dynamic (CFD) simulations are increasingly been employed to investigate the interaction between local hemodynamics and remodelling and can potentially be used to assist in clinical risk assessment of maturation or failure. However, these simulations are inextricably linked to their prescribed boundary conditions and are reliant on in vivo measurements of flow and pressure to ensure their validity. The study compares in vivo measurements of the pressure distribution across arteriovenous fistulae against a representative numerical model. The results of the study indicate relative agreement (error ≈ 8–10%) between the in vivo and CFD prediction of the mean pressure drop across the AVFs. The large pressure drop across the AVFs coincided with a palpable thrill (perivascular vibration) in vivo and fluctuations were observed in the numerical pressure drop signal due to flow instabilities arising at the anastomosis. This study provides a benchmark of the pressure distribution within an AVF and validates that CFD solutions are capable of replicating the abnormal physiological flow conditions induced by fistula creation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Asif, A., P. Roy-Chaudhury, and G. A. Beathard. Early arteriovenous fistula failure: a logical proposal for when and how to intervene. Clin. J. Am. Soc. Nephrol. 1:332–339, 2006.

    Article  PubMed  Google Scholar 

  2. Besarab, A. Resolved: fistulas are preferred to grafts as initial vascular access for dialysis. Proc. J. Am. Soc. Nephrol. 19:1629–1631, 2008.

    Article  Google Scholar 

  3. Botti, L., K. Canneyt, R. Kaminsky, T. Claessens, R. N. Planken, P. Verdonck, A. Remuzzi, and L. Antiga. Numerical evaluation and experimental validation of pressure drops across a patient-specific model of vascular access for hemodialysis. Cardiovasc. Eng. Technol. 4:485–499, 2013.

    Article  Google Scholar 

  4. Browne, L. D., S. O’Callaghan, D. A. Hoey, P. Griffin, T. M. McGloughlin, and M. T. Walsh. Correlation of hemodynamic parameters to endothelial cell proliferation in an end to side anastomosis. Cardiovasc. Eng. Technol. 5:110–118, 2014.

    Article  Google Scholar 

  5. Corpataux, J.-M., E. Haesler, P. Silacci, H. B. Ris, and D. Hayoz. Low-pressure environment and remodelling of the forearm vein in Brescia-Cimino haemodialysis access. Nephrol. Dial. Transplant. 17:1057–1062, 2002.

    Article  PubMed  Google Scholar 

  6. Decorato, I., Z. Kharboutly, T. Vassallo, J. Penrose, C. Legallais, and A. Salsac. Numerical simulation of the fluid structure interactions in a compliant patient-specific arteriovenous fistula. Int. J. Numer. Method Biomed. Eng. 30:143–159, 2014.

    Article  PubMed  Google Scholar 

  7. Gusic, R. J., R. Myung, M. Petko, J. W. Gaynor, and K. J. Gooch. Shear stress and pressure modulate saphenous vein remodeling ex vivo. J. Biomech. 38:1760–1769, 2005.

    Article  PubMed  Google Scholar 

  8. He, Y., C. M. Terry, C. Nguyen, S. A. Berceli, Y.-T. E. Shiu, and A. K. Cheung. Serial analysis of lumen geometry and hemodynamics in human arteriovenous fistula for hemodialysis using magnetic resonance imaging and computational fluid dynamics. J. Biomech. 46:165–169, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  9. He, Y., C. M. Fernandez, Z. Jiang, M. Tao, K. A. O’Malley, and S. A. Berceli. Flow reversal promotes intimal thickening in vein grafts. J. Vasc. Surg. 60(2):471–478, 2014. doi:10.1016/j.jvs.2013.06.081.

    Article  PubMed  Google Scholar 

  10. Kheda, M. F., L. E. Brenner, M. J. Patel, J. J. Wynn, J. J. White, L. M. Prisant, S. A. Jones, and W. D. Paulson. Influence of arterial elasticity and vessel dilatation on arteriovenous fistula maturation: a prospective cohort study. Nephrol. Dial. Transplant. 25:525–531, 2010.

    Article  PubMed  Google Scholar 

  11. Korkut, A. K., F. Hokenek, Y. Kalko, G. Sirin, E. Tireli, and E. Onursal. Patency and venous pressure of arteriovenous fistulas for hemodialysis. Asian Cardiovasc. Thorac. Ann. 13:131–134, 2005.

    Article  PubMed  Google Scholar 

  12. Korten, E., S. Spronk, M. T. C. Hoedt, G. M. T. de Jong, and R. P. Tutein Nolthenius. Distensibility of forearm veins in haemodialysis patients on duplex ultrasound testing using three provocation methods. Eur. J. Vasc. Endovasc. Surg. 38:375–380, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, S., P. Fischer, F. Loth, T. Royston, J. Grogan, and H. Bassiouny. Flow-induced vein-wall vibration in an arteriovenous graft. J. Fluids Struct. 20:837–852, 2005.

    Article  Google Scholar 

  14. Lee, T., J. Barker, and M. Allon. Comparison of survival of upper arm arteriovenous fistulas and grafts after failed forearm fistula. J. Am. Soc. Nephrol. 18:1936–1941, 2007.

    Article  PubMed  Google Scholar 

  15. Lee, T., N. Safdar, M. J. Mistry, Y. Wang, V. Chauhan, B. Campos, R. Munda, V. Cornea, and P. Roy-Chaudhury. Preexisting venous calcification prior to dialysis vascular access surgery. Semin. Dial. 2012. doi:10.1111/j.1525-139X.2012.01063.x.

    Google Scholar 

  16. Loth, F., P. F. Fischer, N. Arslan, C. D. Bertram, S. E. Lee, T. J. Royston, W. E. Shaalan, and H. S. Bassiouny. Transitional flow at the venous anastomosis of an arteriovenous graft: potential activation of the ERK1/2 mechanotransduction pathway. J. Biomech. Eng. 125:49, 2003.

    Article  PubMed  Google Scholar 

  17. McGah, P. M., D. F. Leotta, K. W. Beach, and A. Aliseda. Effects of wall distensibility in hemodynamic simulations of an arteriovenous fistula. Biomech. Model. Mechanobiol. 2013. doi:10.1007/s10237-013-0527-7.

    PubMed Central  PubMed  Google Scholar 

  18. McGah, P. M., D. F. Leotta, K. W. Beach, R. Eugene Zierler, and A. Aliseda. Incomplete restoration of homeostatic shear stress within arteriovenous fistulae. J. Biomech. Eng. 135:011005, 2013.

    Article  PubMed  Google Scholar 

  19. Novo, S., C. Pernice, M. G. Abrignani, R. Tantillo, S. Mansueto, and A. Strano. Behaviour of arm venous pressure in patients with systodiastolic hypertension and in the elderly with isolated systolic hypertension in comparison with healthy controls. Int. Angiol. 16:129–133, 1997.

    CAS  PubMed  Google Scholar 

  20. Peiffer, V., S. J. Sherwin, and P. D. Weinberg. Computation in the rabbit aorta of a new metric—the transverse wall shear stress—to quantify the multidirectional character of disturbed blood flow. J. Biomech. 46:2651–2658, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Pustjens, L. W. J., E. M. H. Bosboom, W. Huberts, and M. Merkx. Three-dimensional modeling to derive the pressure drop-flow relation at an AertioVenous Fistula, 2013.

  22. Rajabi-Jagahrgh, E., M. K. Krishnamoorthy, P. Roy-Chaudhury, P. Succop, Y. Wang, A. Choe, and R. K. Banerjee. Longitudinal assessment of hemodynamic endpoints in predicting arteriovenous fistula maturation. Semin. Dial. 26:208–215, 2012.

    Article  PubMed  Google Scholar 

  23. Rajabi-Jagahrgh, E., M. K. Krishnamoorthy, Y. Wang, A. Choe, P. Roy-Chaudhury, and R. K. Banerjee. Influence of temporal variation in wall shear stress on intima-media thickening in arteriovenous fistulae. Semin. Dial. 26:511–519, 2012.

    Article  PubMed  Google Scholar 

  24. Rajabi-Jagahrgh, E., P. Roy-Chaudhury, Y. Wang, M. Al-Rjoub, B. Campos-Naciff, A. Choe, C. Dumoulin, and R. K. Banerjee. New techniques for determining the longitudinal effects of local hemodynamics on the intima-media thickness in arteriovenous fistulae in an animal model. Semin. Dial. 2013. doi:10.1111/sdi.12162.

    Google Scholar 

  25. Shaw, J. A., B. A. Kingwell, A. S. Walton, J. D. Cameron, P. Pillay, C. D. Gatzka, and A. M. Dart. Determinants of coronary artery compliance in subjects with and without angiographic coronary artery disease. J. Am. Coll. Cardiol. 39:1637–1643, 2002.

    Article  PubMed  Google Scholar 

  26. Sidawy, A. N., L. M. Spergel, A. Besarab, M. Allon, W. C. Jennings, F. T. Padberg, M. H. Murad, V. M. Montori, A. M. O’Hare, K. D. Calligaro, R. A. Macsata, A. B. Lumsden, and E. Ascher. The Society for Vascular Surgery: clinical practice guidelines for the surgical placement and maintenance of arteriovenous hemodialysis access. J. Vasc. Surg. 48(5):2S–25S, 2008.

    Article  PubMed  Google Scholar 

  27. Sigovan, M., V. Rayz, W. Gasper, H. F. Alley, C. D. Owens, and D. Saloner. Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD. Ann. Biomed. Eng. 41:657–668, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Tordoir, J. H. M., P. Rooyens, R. Dammers, F. M. van der Sande, M. de Haan, and T. I. Yo. Prospective evaluation of failure modes in autogenous radiocephalic wrist access for haemodialysis. Nephrol. Dial. Transplant. 18:378–383, 2003.

    Article  PubMed  Google Scholar 

  29. Van der Linden, J., T. W. Lameris, A. H. van den Meiracker, A. A. E. A. de Smet, P. J. Blankestijn, and M. A. van den Dorpel. Forearm venous distensibility predicts successful arteriovenous fistula. Am. J. Kidney Dis. 47:1013–1019, 2006.

    Article  PubMed  Google Scholar 

  30. Wang, Y., M. Krishnamoorthy, R. Banerjee, J. Zhang, S. Rudich, C. Holland, L. Arend, and P. Roy-Chaudhury. Venous stenosis in a pig arteriovenous fistula model–anatomy, mechanisms and cellular phenotypes. Nephrol. Dial. Transplant 23:525–533, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge The Irish Research Council for Science Engineering and Technology (IRCSET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Walsh.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10439_2015_1295_MOESM1_ESM.tif

Supplementary Figure 1. A schematic of the representative fistula model is shown. The parameters Da, Dv and α refer to the arterial diameter, vein diameter and anastomosis angle between the vessels. The variable s refers to normalised segment length and ranges from 0-1 where 0 represents the anastomosis origin and 1 represents the length of the respective vessel. Supplementary material 1 (TIFF 21417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Browne, L.D., Griffin, P., Bashar, K. et al. In Vivo Validation of the In Silico Predicted Pressure Drop Across an Arteriovenous Fistula. Ann Biomed Eng 43, 1275–1286 (2015). https://doi.org/10.1007/s10439-015-1295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1295-6

Keywords

Navigation