Skip to main content

Advertisement

Log in

Differential Effects of Tumor Secreted Factors on Mechanosensitivity, Capillary Branching, and Drug Responsiveness in PEG Hydrogels

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Solid cancers induce the formation of new blood vessels to promote growth and metastasis. Unlike the normal vascular networks, the tumor induced vasculatures exhibit abnormal shape and function. Past efforts have been focused on characterizing the altered growth factor signaling pathway in tumor capillary endothelial cells; however, the mechanical microenvironment of tumor also plays a significant role in regulating the formation of vascular patterns. Here, we used synthetic hydrogel based cell culture platforms to probe how activation of human umbilical endothelial cells (HUVECs) by tumor secreted factors alters the responses to matrix modulus and in turn the capillary network formation and drug sensitivity. Our study revealed that while in absence of activation, HUVECs prefer a substrate of appropriate stiffness for optimal capillary network formation; stimulation by tumor cells disrupts the mechano-responsive behavior of HUVECs. Additionally, the effect of vandetanib on reducing the capillary network was also investigated. The response of HUVECs to the anti-angiogenic agent was substrate modulus dependent displaying increased sensitivity on the compliant gels. Stimulation by tumor cells reduced the responsiveness to vandetanib, particularly when plated on stiffer gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bishop, E. T., G. T. Bell, S. Bloor, I. J. Broom, N. F. Hendry, and D. N. Wheatley. An in vitro model of angiogenesis: basic features. Angiogenesis. 3:335–344, 1993.

    Article  Google Scholar 

  2. Brassard, B. W., H. Y. Chen, Y. Bergeron, and D. Paré. Differences in fine root productivity between mixed-and single-species stands. Funct. Ecol. 25:238–246, 2011.

    Article  Google Scholar 

  3. Califano, J. P., and C. A. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1:122–132, 2008.

    Article  Google Scholar 

  4. Califano, J. P., and C. A. Reinhart-King. The effects of substrate elasticity on endothelial cell network formation and traction force generation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:3343–3345, 2009. doi:10.1109/IEMBS.2009.5333194.

    PubMed  Google Scholar 

  5. Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3:68–75, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ciardiello, F., R. Caputo, R. Bianco, V. Damiano, G. Fontanini, S. Cuccato, S. De Palacido, A. R. Bianco, and G. Tortora. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin. Cancer. Res. 7:1459–1465, 2001.

    CAS  PubMed  Google Scholar 

  7. Ciardiello, F., and G. Tortora. Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur. J. Cancer. 39:1348–1354, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. de Sampaio, P. C., D. Auslaender, D. Krubasik, A. V. Failla, J. N. Skepper, G. Murphy, and W. R. English. A heterogeneous in vitro three dimensional model of tumour-stroma interactions regulating sprouting angiogenesis. PLoS One 7:e30753, 2012.

    Article  Google Scholar 

  9. Dvorak, H. F. How tumors make bad blood vessels and stroma. Am. J. Pathol. 162:1747, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Engler, A. J., M. A. Griffin, S. Sen, C. G. Bönnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness pathological implications for soft or stiff microenvironments. J. Cell. Biol. 166:877–887, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Engler, A. J., L. Richert, J. Y. Wong, C. Picart, and D. E. Discher. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf. Sci. 570:142–154, 2004.

    Article  CAS  Google Scholar 

  12. Folkman, J., K. Watson, D. Ingiber, and D. Hanahan. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61, 1989.

    Article  CAS  PubMed  Google Scholar 

  13. Ghajar, C. M., X. Chen, J. W. Harris, V. Suresh, C. C. Hughes, N. L. Jeon, and S. C. George. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys. J. 94:1930–1941, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ghosh, K., C. K. Thodeti, A. C. Dudley, A. Mammoto, M. Klagsbrun, and D. E. Ingber. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc. Natl. Acad. Sci. USA 105:11305–11310, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Goto, F. K. K. J., K. Goto, K. Weindel, and J. Folkman. Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest. 69:508–517, 1993.

    CAS  PubMed  Google Scholar 

  16. Hall, A. Rho GTPases and the actin cytoskeleton. Science. 279:509–514, 1998.

    Article  CAS  PubMed  Google Scholar 

  17. Huang, S., and D. E. Ingber. The structural and mechanical complexity of cell-growth control. Nat. Cell. Biol. 1:E131–E138, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. Hucknall, A., S. Rangarajan, and A. Chilkoti. In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv. Mater. 21:2441–2446, 2009.

    Article  CAS  Google Scholar 

  19. Kniazeva, E., and A. J. Putnam. Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am. J. Physiol Cell. Physiol. 297:C179–C187, 2009.

    Article  CAS  PubMed  Google Scholar 

  20. Koumoutsakos, P., I. Pivkin, and F. Milde. The fluid mechanics of cancer and its therapy. Annu. Rev. Fluid. Mech. 45:325–355, 2013.

    Article  Google Scholar 

  21. Lafleur, M. A., M. M. Handsley, V. Knauper, G. Murphy, and D. R. Edwards. Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J. Cell. Sci. 115:3427–3438, 2002.

    CAS  PubMed  Google Scholar 

  22. Miyamoto, S., H. Teramoto, O. A. Coso, J. S. Gutkind, P. D. Burbelo, S. K. Akiyama, and K. M. Yamada. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell. Biol. 131:791–805, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Mohan, V. P., C. A. Scanga, K. Yu, H. M. Scott, K. E. Tanaka, E. Tsang, et al. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect. Immun. 69:1847–1855, 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Montesano, R., M. S. Pepper, and L. Orci. Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J. Cell. Sci. 105:1013–1024, 1993.

    CAS  PubMed  Google Scholar 

  25. Motzer, R. J., M. D. Michaelson, B. G. Redman, G. R. Hudes, G. Wilding, R. A. Figlin, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 24:16–24, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen, E. H., M. R. Zanotelli, M. P. Schwartz, and W. L. Murphy. Differential effects of cell adhesion, modulus and VEGFR-2 inhibition on capillary network formation in synthetic hydrogel arrays. Biomaterials. 35:2149–2161, 2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Paszek, M. J., and V. M. Weaver. The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. 9:325–342, 2004.

    Article  Google Scholar 

  28. Pedron, S., and B. A. C. Harley. Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. J. Biomed. Mater. Res. A 101:3404–3415, 2013.

    Article  CAS  PubMed  Google Scholar 

  29. Plopper, G. E., H. P. McNamee, L. E. Dike, K. Bojanowski, and D. E. Ingber. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell. 6:1349, 1995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ridley, A. J. Rho family proteins: coordinating cell responses. Trends Cell. Biol. 11:471–477, 2001.

    Article  CAS  PubMed  Google Scholar 

  31. Rozario, T., and D. W. DeSimone. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341:126–140, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Saunders, R. L., and D. A. Hammer. Assembly of human umbilical vein endothelial cells on compliant hydrogels. Cell. Mol. Bioeng. 3:60–67, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Secomb, T. W., R. Hsu, M. W. Dewhirst, B. Klitzman, and J. F. Gross. Analysis of oxygen transport to tumor tissue by microvascular networks. Int. J. Radlat. Oncol. 25:481–489, 1993.

    Article  CAS  Google Scholar 

  34. Senger, D. R., S. R. Ledbetter, K. P. Claffey, A. Papadopoulos-Sergiou, C. A. Peruzzi, and M. Detmar. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am. J. Pathol. 149:293, 1996.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Sieminski, A. L., A. S. Was, G. Kim, H. Gong, and R. D. Kamm. The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell. Biochem. Biophys. 49:73–83, 2007.

    Article  CAS  PubMed  Google Scholar 

  36. Wellman, P., R. D. Howe, E. Dalton, and K. A. Kern. Breast tissue stiffness in compression is correlated to histological diagnosis. Harvard BioRobotics Laboratory Technical Report, 1999.

  37. Wood, J. A., N. M. Shah, C. T. McKee, M. L. Hughbanks, S. J. Liliensiek, P. Russell, and C. J. Murphy. The role of substratum compliance of hydrogels on vascular endothelial cell behavior. Biomaterials 32:5056–5064, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wu, Y., M. A. Al-Ameen, and G. Ghosh. Integrated effects of matrix mechanics and vascular endothelial growth factor (VEGF) on capillary sprouting. Ann. Biomed. Eng. 42:1024–1036, 2014.

    Article  PubMed  Google Scholar 

  39. Yamamura, N., R. Sudo, M. Ikeda, and K. Tanishita. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue. Eng. 13:1443–1453, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank University of Michigan-Dearborn and University of Michigan-Ann Arbor: Office of the Vice President for Research for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Ghosh.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Guo, B. & Ghosh, G. Differential Effects of Tumor Secreted Factors on Mechanosensitivity, Capillary Branching, and Drug Responsiveness in PEG Hydrogels. Ann Biomed Eng 43, 2279–2290 (2015). https://doi.org/10.1007/s10439-015-1254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1254-2

Keywords

Navigation