Skip to main content

Advertisement

Log in

Computational Biorheology of Human Blood Flow in Health and Disease

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hematologic disorders arising from infectious diseases, hereditary factors and environmental influences can lead to, and can be influenced by, significant changes in the shape, mechanical and physical properties of red blood cells (RBCs), and the biorheology of blood flow. Hence, modeling of hematologic disorders should take into account the multiphase nature of blood flow, especially in arterioles and capillaries. We present here an overview of a general computational framework based on dissipative particle dynamics (DPD) which has broad applicability in cell biophysics with implications for diagnostics, therapeutics and drug efficacy assessments for a wide variety of human diseases. This computational approach, validated by independent experimental results, is capable of modeling the biorheology of whole blood and its individual components during blood flow so as to investigate cell mechanistic processes in health and disease. DPD is a Lagrangian method that can be derived from systematic coarse-graining of molecular dynamics but can scale efficiently up to arterioles and can also be used to model RBCs down to the spectrin level. We start from experimental measurements of a single RBC to extract the relevant biophysical parameters, using single-cell measurements involving such methods as optical tweezers, atomic force microscopy and micropipette aspiration, and cell-population experiments involving microfluidic devices. We then use these validated RBC models to predict the biorheological behavior of whole blood in healthy or pathological states, and compare the simulations with experimental results involving apparent viscosity and other relevant parameters. While the approach discussed here is sufficiently general to address a broad spectrum of hematologic disorders including certain types of cancer, this paper specifically deals with results obtained using this computational framework for blood flow in malaria and sickle cell anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Abbitt, K. B., and G. B. Nash. Rheological properties of the blood influencing selectin-mediated adhesion of flowing leukocytes. Am. J. Physiol. 285:H229–H240, 2003.

    CAS  Google Scholar 

  2. Abkarian, M., M. Faivre, and A. Viallat. Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98:188302, 2007.

    PubMed  Google Scholar 

  3. Abkarian, M., M. Faivre, R. Horton, K. Smistrup, C. A. Best-Popescu, and H. A. Stone. Cellular-scale hydrodynamics. Biomed. Mater. 3:034011, 2008.

    PubMed  Google Scholar 

  4. Abkarian, M., C. Lartigue, and A. Viallat. Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys. Rev. Lett. 88:068103, 2002.

    PubMed  Google Scholar 

  5. Alizadehrad, D., Y. Imai, K. Nakaaki, T. Ishikawa, and T. Yamaguchi. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. J. Biomech. 45:2684–2689, 2012.

    PubMed  Google Scholar 

  6. Allen, M. P., and D. J. Tildesley. Computer Simulation of Liquids. New York: Clarendon Press, 1987.

    Google Scholar 

  7. AlMomani, T., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow. Ann. Biomed. Eng. 36:905–920, 2008.

    CAS  PubMed  Google Scholar 

  8. Antia, M., T. Herricks, and P. K. Rathod. Microfluidic modeling of cell–cell interactions in malaria pathogenesis. PLoS Pathog. 3:939–945, 2007.

    CAS  Google Scholar 

  9. Bagchi, P. Mesoscale simulation of blood flow in small vessels. Biophys. J. 92:1858–1877, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bagchi, P., and R. M. Kalluri. Dynamic rheology of a dilute suspension of elastic capsules: effect of capsule tank-treading, swinging and tumbling. J. Fluid Mech. 669:498–526, 2011.

    Google Scholar 

  11. Bagchi, P., A. S. Popel, and P. C. Johnson. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. 127:1070–1080, 2005.

    PubMed  Google Scholar 

  12. Bagge, U., and R. Karlsson. Maintenance of white blood cell margination at the passage through small venular junctions. Microvasc. Res. 20:92–95, 1980.

    CAS  PubMed  Google Scholar 

  13. Bäumler, H., E. Donath, A. Krabi, W. Knippel, H. Budde, and A. Kiesewetter. Electrophoresis of human red blood cells and platelets: evidence for depletion of dextran. Biorheology 33:333–351, 1996.

    PubMed  Google Scholar 

  14. Beck, W. S. (ed.). Hematology, 5th ed. Cambridge: MIT Press, 1991.

  15. Bow, H., I. V. Pivkin, M. Diez-Silva, S. J. Goldfless, M. Dao, J. C. Niles, S. Suresh, and J. Han. A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–1073, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Brooks, D. E. The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. J. Colloid Interface Sci. 43:700–713, 1973.

    CAS  Google Scholar 

  17. Bugliarello, G., and J. Sevilla. Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7:85–107, 1970.

    CAS  PubMed  Google Scholar 

  18. Byun, H. S., T. Hillman, J. Higgins, M. Diez-Silva, Z. Peng, M. Dao, R. Dasari, S. Suresh, and Y.-K. Park. Optical measurements of biomechanical properties of individual erythrocytes from a sickle patient. Acta Biomater. 8:4130–4138, 2012.

    PubMed Central  PubMed  Google Scholar 

  19. Cantat, I., and C. Misbah. Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83:880–883, 1999.

    CAS  Google Scholar 

  20. Casson, N. Rheology of Disperse Systems. New York: Pergamon Press, 1992.

    Google Scholar 

  21. Chaudhuri, O., S. Parekh, W. Lam, and D. Fletcher. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat. Methods 6:383–387, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Chien, S., and K.-M. Jan. Ultrastructural basis of the mechanism of rouleaux formation. Microvasc. Res. 5:155–166, 1973.

    CAS  PubMed  Google Scholar 

  23. Chien, S., S. Usami, R. J. Dellenback, M. I. Gregersen, L. B. Nanninga, and N. M. Guest. Blood viscosity: influence of erythrocyte aggregation. Science 157:829–831, 1967.

    Google Scholar 

  24. Chien, S., S. Usami, R. J. Kellenback, and M. I. Gregersen. Shear-dependent interaction of plasma proteins with erythrocytes in blood rheology. Am. J. Physiol. 219:143–153, 1970.

    CAS  PubMed  Google Scholar 

  25. Chien, S., S. Usami, H. M. Taylor, J. L. Lundberg, and M. I. Gregersen. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21:81–87, 1996.

    Google Scholar 

  26. Clausen, J. R., D. A. Reasor, Jr., and C. K. Aidun. The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules. J. Fluid Mech. 685:202–234, 2011.

    Google Scholar 

  27. Cokelet, G., E. W. Merrill, E. R. Gilliland, H. Shin, A. Britten, and J. R. E. Wells. The rheology of human blood-measurement near and at zero shear rate. Trans. Soc. Rheol. 7:303–317, 1963.

    Google Scholar 

  28. Cokelet, G. R., and H. L. Goldsmith. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ. Res. 68:1–17, 1991.

    CAS  PubMed  Google Scholar 

  29. Copley, A. L., C. R. Huang, and R. G. King. Rheogoniometric studies of whole human blood at shear rates from 1,000-0.0009 sec−1. Part I. Experimental findings. Biorheology 10:17–22, 1973.

    CAS  PubMed  Google Scholar 

  30. Cranston, H. A., C. W. Boylan, G. L. Carroll, S. P. Sutera, J. R. Williamson, I. Y. Gluzman, and D. J. Krogstad. Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223:400–403, 1984.

    CAS  PubMed  Google Scholar 

  31. Cravalho, P., M. Diez-Silva, H. Chen, M. Dao, and S. Suresh. Cytoadherence of erythrocytes invaded by Plasmodium falciparum: quantitative contact-probing of a human malaria receptor. Acta Biomater. 9:6349–6359, 2013.

    Google Scholar 

  32. Crowl, L., and A. L. Fogelson. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int. J. Numer. Methods Biomed. Eng. 26:471–487, 2010.

    Google Scholar 

  33. Crowl, L., and A. L. Fogelson. Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J. Fluid Mech. 676:348–375, 2011.

    Google Scholar 

  34. Dao, M., J. Li, and S. Suresh. Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26:1232–1244, 2006.

    CAS  Google Scholar 

  35. Dao, M., C. T. Lim, and S. Suresh. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51:2259–2280, 2003.

    Google Scholar 

  36. Diez-Silva, M., M. Dao, J. Han, C.-T. Lim, and S. Suresh. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull. 35:382–388, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Diez-Silva, M., Y.-K. Park, S. Huang, H. Bow, O. Mercereau-Puijalon, G. Deplaine, C. Lavazec, S. Perrot, S. Bonnefoy, M. S. Feld, J. Han, M. Dao, and S. Suresh. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Sci. Rep. 2:614, 2012.

    PubMed Central  PubMed  Google Scholar 

  38. Discher, D. E., D. H. Boal, and S. K. Boey. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys. J. 75:1584–1597, 1998.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Discher, D. E., N. Mohandas, and E. A. Evans. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035, 1994.

    CAS  PubMed  Google Scholar 

  40. Doddi, S. K., and P. Bagchi. Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int. J. Multiphase Flow 34:966–986, 2008.

    CAS  Google Scholar 

  41. Doddi, S. K., and P. Bagchi. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79:046318, 2009.

    Google Scholar 

  42. Dupin, M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707, 2007.

    Google Scholar 

  43. Dupin, M. M., I. Halliday, C. M. Care, and L. L. Munn. Lattice boltzmann modeling of blood cell dynamics. Int. J. Comput. Fluid Dyn. 22:481–492, 2008.

    Google Scholar 

  44. Dzwinel, W., K. Boryczko, and D. A. Yuen. A discrete-particle model of blood dynamics in capillary vessels. J. Colloid Interface Sci. 258:163–173, 2003.

    CAS  PubMed  Google Scholar 

  45. Eckstein, E. C., A. W., and F. J. Millero III. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc. Res. 36:31–39, 1988.

    CAS  PubMed  Google Scholar 

  46. Eggleton, C. D., and A. S. Popel. Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids 10:1834, 1998.

    CAS  Google Scholar 

  47. Enden, G., and A. S. Popel. A numerical study of plasma skimming in small vascular bifurcations. J. Biomech. Eng. 116:79–88, 1994.

    CAS  PubMed  Google Scholar 

  48. Enderle, T., T. Ha, D. F. Ogletree, D. S. Chemla, C. Magowan, S. Weiss. Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Proc. Natl Acad. Sci. U.S.A. 94:520–525, 1997.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Ermak, D. L., and J. A. McCammon. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69:1352–1360, 1978.

    CAS  Google Scholar 

  50. Espanol, P., and M. Revenga. Smoothed dissipative particle dynamics. Phys. Rev. E 67:026705, 2003.

    Google Scholar 

  51. Espanol, P., and P. Warren. Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30:191–196, 1995.

    CAS  Google Scholar 

  52. Evans, E. A., and R. Skalak. Mechanics and Thermodynamics of Biomembranes. Boca Raton, FL: CRC Press, 1980.

  53. Fahraeus, R. The suspension stability of blood. Physiol. Rev 9:241–274, 1929.

    Google Scholar 

  54. Fahraeus, R. The influence of the rouleau formation of the erythrocytes on the rheology of the blood. Acta Med. Scand. 161:151–165, 1958.

    CAS  PubMed  Google Scholar 

  55. Fahraeus, R., and T. Lindqvist. Viscosity of blood in narrow capillary tubes. Am. J. Phys. 96:562–568, 1931.

    CAS  Google Scholar 

  56. Fedosov, D. A., B. Caswell, and G. E. Karniadakis. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215–2225, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Fedosov, D. A., B. Caswell, and G. E. Karniadakis. Systematic coarse-graining of spectrin-level red blood cell models. Comput. Methods Appl. Mech. Eng. 199:1937–1948, 2010.

    Google Scholar 

  58. Fedosov, D. A., B. Caswell, and G. E. Karniadakis. Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys. J. 100:2084–2093, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Fedosov, D. A., B. Caswell, A. S. Popel, and G. E. Karniadakis. Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628, 2010.

    PubMed Central  PubMed  Google Scholar 

  60. Fedosov, D. A., B. Caswell, S. Suresh, and G. E. Karniadakis. Quantifying the biophysical characteristics of Plasmodium falciparum-parasitized red blood cells in microcirculation. Proc. Natl Acad. Sci. U.S.A. 108:35–39, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Fedosov, D. A., J. Fornleitner, and G. Gompper. Margination of white blood cells in microcapillary flow. Phys. Rev. Lett. 108:028104, 2012.

    PubMed  Google Scholar 

  62. Fedosov, D. A., H. Noguchi, and G. Gompper. Multiscale modeling of blood flow: from single cells to blood rheology. Biomech. Model. Mechanobiol., 2013. DOI:10.1007/s10237-013-0497-9.

  63. Fedosov, D. A., W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis. Predicting human blood viscosity in silico. Proc. Natl Acad. Sci. U.S.A. 108:11772–11777, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Finger, E. B., K. D. Puri, R. Alon, M. B. Lawrence, U. H. von Andrian, and T. A. Springer. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature (London) 379:266–269, 1996.

    CAS  Google Scholar 

  65. Firrell, J. C., and H. H. Lipowsky. Leukocyte margination and deformation in mesenteric venules of rat. Am. J. Physiol. 256:H1667–H1674, 1989.

    CAS  PubMed  Google Scholar 

  66. Fischer, T. M. Shape memory of human red blood cells. Biophys. J. 86:3304–3313, 2004.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Freund, J. B. Leukocyte margination in a model microvessel. Phys. Fluids 19:023301, 2007.

    Google Scholar 

  68. Freund, J. B., and M. M. Orescanin. Cellular flow in a small blood vessel. J. Fluid Mech. 671:466–490, 2011.

    Google Scholar 

  69. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer, 1993.

  70. Gaehtgens, P., C. Dührssen, and K. H. Albrecht. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells 6:799–817, 1980.

    CAS  PubMed  Google Scholar 

  71. Gidaspow, D., and J. Huang. Kinetic theory based model for blood flow and its viscosity. Ann. Biomed. Eng. 38:1534–1545, 2009.

    Google Scholar 

  72. Goldsmith, H. L., G. R. Cokelet, and P. Gaehtgens. Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 257:H1005–H1015, 1989.

    CAS  PubMed  Google Scholar 

  73. Goldsmith, H. L., and S. Spain. Margination of leukocytes in blood flow through small tubes. Microvasc. Res. 27:204–222, 1984.

    CAS  PubMed  Google Scholar 

  74. Gompper, G., T. Ihle, D. M. Kroll, and R. G. Winkler. Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv. Polym. Sci. 221:1–87, 2009.

    CAS  Google Scholar 

  75. Groot, R. D., and P. B. Warren. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–4435, 1997.

    CAS  Google Scholar 

  76. Henon, S., G. Lenormand, A. Richert, and F. Gallet. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76:1145–1151, 1999.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Higgins, J. M., D. T. Eddington, S. N. Bhatia, and L. Mahadevan. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl Acad. Sci. U.S.A. 104:20496–20500, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Holm, S. H., J. P. Beech, M. P. Barrett, and J. O. Tegenfeldt. Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332, 2011.

    CAS  PubMed  Google Scholar 

  79. Hoogerbrugge, P. J., and J. M. V. A. Koelman. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19:155–160, 1992.

    Google Scholar 

  80. Hou, H. W., A. A. S. Bhagat, A. G. L. Chong, P. Mao, K. S. W. Tan, J. Han, C. T. Lim. Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613, 2010.

    CAS  PubMed  Google Scholar 

  81. Iordan A, Duperray A, Verdier C (2008) Fractal approach to the rheology of concentrated suspensions. Phys. Rev. E 77:011911

    CAS  Google Scholar 

  82. Itoh, T., S. Chien, and S. Usami. Effects of hemoglobin concentration on deformability of individual sickle cells after deoxygenation. Blood 85:2245–2253, 1995.

    CAS  PubMed  Google Scholar 

  83. Jain, A., and L. L. Munn. Determinants of leukocyte margination in rectangular microchannels. PLoS ONE 4:e7104, 2009.

    PubMed Central  PubMed  Google Scholar 

  84. Janoschek, F., F. Toschii, and J. Harting. Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E 82:056710, 2010.

    CAS  Google Scholar 

  85. Ju, M., S. S. Ye, B. Namgung, S. Cho, H. T. Low, H. L. Leo, and S. Kim. A review of numerical methods for red blood cell flow simulation. Computer Methods Biomech. Biomed. Eng., 2013. DOI:10.1080/10255842.2013.783574

  86. Kaul, D. K., M. E. Fabry, P. Windisch, S. Baez, and R. L. Nagel. Erythrocytes in sickle-cell-anemia are heterogeneous in their rheological and hemodynamic characteristics. J. Clin. Invest. 72:22–31, 1983.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Kaul, D. K., and H. Xue. Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. Blood 77:1353–1361, 1991.

    CAS  PubMed  Google Scholar 

  88. Kim, S., L. R. Long, A. S. Popel, M. Intaglietta, and P. C. Johnson. Temporal and spatial variations of cell-free layer width in arterioles. Am. J. Physiol. 293:H1526–H1535, 2007.

    CAS  Google Scholar 

  89. Kim, S., P. K. Ong, O. Yalcin, M. Intaglietta, and P. C. Johnson. The cell-free layer in microvascular blood flow. Biorheology 46:181–189, 2009.

    CAS  PubMed  Google Scholar 

  90. Kumar, A., and M. D. Graham. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter 8:10536–10548, 2012.

    CAS  Google Scholar 

  91. Kumar, A., and M. D. Graham. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys. Rev. Lett. 109:108102, 2012.

    PubMed  Google Scholar 

  92. LaCelle, P. L. Oxygen delivery to muscle cells during capillary vascular occlusion by sickle erythrocytes. Blood Cells 3:263–272, 1977.

    Google Scholar 

  93. Lei, H., D. A. Fedosov, B. Caswell, and G. E. Karniadakis. Blood flow in small tubes: quantifying the transition to the non-continuum regime. J. Fluid Mech. 722:214–239, 2013.

    CAS  Google Scholar 

  94. Lei, H., and G. E. Karniadakis. Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys. J. 102:185–194, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Lei, H., and G. E. Karniadakis. Probing vaso-occlusion phenomena in sickle cell anemia via mesoscopic simulations. Proc. Natl Acad. Sci. U.S.A. 110:11326–11330, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88:3707–3719

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Li, X., P. M. Vlahovska, and G. E. Karniadakis. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9:28–37, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Liu, Y., and W. K. Liu. Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220:139–154, 2006.

    Google Scholar 

  99. Lucy, L. B. A numerical approach to testing the fission hypothesis. Astronom. J. 82:1013–1024, 1977.

    Google Scholar 

  100. MacMeccan, R. M., J. R. Clausen, G. P. Neitzel, and C. K. Aidun. Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J. Fluid Mech. 618:13–39, 2009.

    Google Scholar 

  101. Maeda, N., Y. Suzuki, J. Tanaka, and N. Tateishi. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol. 271:H2454–H2461, 1996.

    CAS  PubMed  Google Scholar 

  102. Malevanets, A., and R. Kapral. Mesoscopic model for solvent dynamics. J. Chem. Phys. 110:8605–8613, 1999.

    CAS  Google Scholar 

  103. Mattice, W. L., and U. W. Suter. Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems. New York: Wiley Interscience, 1994.

    Google Scholar 

  104. McWhirter, J. L., H. Noguchi, and G. Gompper. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl Acad. Sci. U.S.A. 106:6039–6043, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Melchionna, S. A model for red blood cells in simulations of large-scale blood flows. Macromol. Theory Simul. 20:548–561, 2011.

    CAS  Google Scholar 

  106. Merrill, E. W., E. R. Gilliland, G. Cokelet, H. Shin, A. Britten, J. R. E. Wells. Rheology of human blood near and at zero flow. Biophys. J. 3:199–213, 1963.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Merrill, E. W., E. R. Gilliland, T. S. Lee, and E. W. Salzman. Blood rheology: effect of fibrinogen deduced by addition. Circ. Res. 18:437–446, 1966.

    CAS  PubMed  Google Scholar 

  108. Messlinger, S., B. Schmidt, H. Noguchi, and G. Gompper. Dynamical regimes and hydrodynamic lift of viscous vesicles under shear. Phys. Rev. E 80:011901, 2009.

    Google Scholar 

  109. Mills, J. P., M. Diez-Silva, D. J. Quinn, M. Dao, M. J. Lang, K. S. W. Tan, C. T. Lim, G. Milon, P. H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh. Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc. Natl Acad. Sci. U.S.A. 104:9213–9217, 2007.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Monaghan, J. J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 68:1703–1759, 2005.

    Google Scholar 

  111. Murata, T. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes. Biorheology 33:267–283, 1996.

    CAS  PubMed  Google Scholar 

  112. Neu, B., and H. J. Meiselman. Depletion-mediated red blood cell aggregation in polymer solutions. Biophys. J. 83:2482–2490, 2002.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Noguchi, H., and G. Gompper. Fluid vesicles with viscous membranes in shear flow. Phys. Rev. Lett. 93:258102, 2004.

    PubMed  Google Scholar 

  114. Noguchi, H., and G. Gompper. Dynamics of fluid vesicles in shear flow: effect of the membrane viscosity and thermal fluctuations. Phys. Rev. E 72:011901, 2005.

    Google Scholar 

  115. Noguchi, H., and G. Gompper. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl Acad. Sci. U.S.A. 102:14159–14164, 2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Pan, W., B. Caswell, and G. E. Karniadakis. A low-dimensional model for the red blood cell. Soft Matter 6:4366–4376, 2010.

    CAS  Google Scholar 

  117. Pan, W., D. A. Fedosov, B. Caswell, and G. E. Karniadakis. Predicting dynamics and rheology of blood flow: a comparative study of multiscale and low-dimensional models of red blood cells. Microvasc. Res. 82:163–170, 2011.

    PubMed Central  PubMed  Google Scholar 

  118. Park, Y. K., M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. U.S.A. 105:13730–13735, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Pearson, M. J., and H. H. Lipowsky. Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am. J. Physiol. 279:H1460–H1471, 2000.

    CAS  Google Scholar 

  120. Peng, Z., X. Li, I. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh. Lipid-bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl Acad. Sci. U.S.A. 110:13356–13361, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Picart, C., J. M. Piau, and H. Galliard. Human blood shear yield stress and its hematocrit dependence. J. Rheol. 42:1–12, 1998.

    CAS  Google Scholar 

  122. Pivkin, I. V., and G. E. Karniadakis. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105, 2008.

    PubMed  Google Scholar 

  123. Popel, A. S., and P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37:43–69, 2005.

    PubMed Central  PubMed  Google Scholar 

  124. Popescu, G., Y.-K. Park, R. R. Dasari, K. Badizadegan, and M. S. Feld. Coherence properties of red blood cell membrane motions. Phys. Rev. E 76:031902, 2007.

    Google Scholar 

  125. Pozrikidis, C. Numerical simulation of cell motion in tube flow. Ann. Biomed. Eng. 33:165–178, 2005.

    CAS  PubMed  Google Scholar 

  126. Pribush, A., D. Zilberman-Kravits, and N. Meyerstein. The mechanism of the dextran-induced red blood cell aggregation. Eur. Biophys. J. 36:85–94, 2007.

    CAS  PubMed  Google Scholar 

  127. Pries, A. R., K. Ley, M. Claassen, and P. Gaehtgens. Red cell distribution at microvascular bifurcations. Microvasc. Res. 38:81–101, 1989.

    CAS  PubMed  Google Scholar 

  128. Pries, A. R., D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1778, 1992.

    CAS  PubMed  Google Scholar 

  129. Pries, A. R., T. W. Secomb, and P. Gaehtgens. Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am. J. Physiol. 269:H1713–H1722, 1995.

    CAS  PubMed  Google Scholar 

  130. Pries, A. R., T. W. Secomb, and P. Gaehtgens. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32:654–667, 1996.

    CAS  PubMed  Google Scholar 

  131. Puig-de Morales-Marinkovic, M., K. T. Turner, J. P. Butler, J. J. Fredberg, and S. Suresh. Viscoelasticity of the human red blood cell. Am. J. Physiol. 293:C597–C605, 2007.

    CAS  Google Scholar 

  132. Raventos-Suarez, C., D. Kaul, and R. Nagel. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. U.S.A. 82:3829–3833, 1985.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Reasor, Jr., D. A., M. Mehrabadi, D. N. Ku, and C. K. Aidun. Determination of critical parameters in platelet margination. Ann. Biomed. Eng. 41:238–249, 2013.

    PubMed  Google Scholar 

  134. Reinke, W., P. Gaehtgens, and P. C. Johnson. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am. J. Physiol. 253:H540–H547, 1987.

    CAS  PubMed  Google Scholar 

  135. Rosenbluth, M., W. Lam, and D. Fletcher. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip 8:1062–1070, 2008.

    CAS  PubMed  Google Scholar 

  136. Samsel, R. W., and A. S. Perelson. Kinetics of rouleau formation: I. A mass action approach with geometric features. Biophys. J. 37:493–514, 1982.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Schmid-Schönbein, H., and R. E. Wells. Rheological properties of human erythrocytes and their influence upon the “anomalous” viscosity of blood. Ergeb. Physiol. Biol. Chem. Exper. Pharmakol. 63:146–219, 1971.

    Google Scholar 

  138. Sharan, M., and A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38:415–428, 2001.

    CAS  PubMed  Google Scholar 

  139. Shelby, J. P., J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. U.S.A. 100:14618–14622, 2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Skalak, R., and P. I. Branemark. Deformation of red blood cells in capillaries. Science 164:717–719, 1969.

    CAS  PubMed  Google Scholar 

  141. Skalak, R., S. R. Keller, and T. W. Secomb. Mechanics of blood flow. J. Biomech. Eng. 103:102–115, 1981.

    CAS  PubMed  Google Scholar 

  142. Skotheim, J. M., and T. W. Secomb. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98:078301, 2007.

    CAS  PubMed  Google Scholar 

  143. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57:827–872, 1995.

    CAS  PubMed  Google Scholar 

  144. Steffen, P., C. Verdier, and C. Wagner. Quantification of depletion-induced adhesion of red blood cells. Phys. Rev. Lett. 110:018102, 2013.

    CAS  PubMed  Google Scholar 

  145. Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford: Oxford University Press, 2001.

    Google Scholar 

  146. Sun, C., C. Migliorini, and L. L. Munn. Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys. J. 85:208–222, 2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Suresh, S., J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1:15–30, 2005.

    CAS  PubMed  Google Scholar 

  148. Suzuki, Y., N. Tateishi, M. Soutani, and N. Maeda. Deformation of erythrocytes in microvessels and glass capillaries: effect of erythrocyte deformability. Microcirculation 3:49–57, 1996.

    CAS  PubMed  Google Scholar 

  149. Tangelder, G. J., H. C. Teirlinck, D. W. Slaaf, and R. S. Reneman. Distribution of blood platelets flowing in arterioles. Am. J. Physiol. 248:H318–H323, 1985.

    CAS  PubMed  Google Scholar 

  150. Thurston, G. B. Viscoelastic properties of blood and blood analogs. In Advances in Hemodynamics and Hemorheology, Vol. 1, edited by T. V. How. Greenwich, CT: JAI Press, 1996, pp. 1–30.

  151. Tilles, A. W., and E. C. Eckstein. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc. Res. 33:211–223, 1987.

    CAS  PubMed  Google Scholar 

  152. Tokarev, A. A., A. A. Butylin, and F. I. Ataullakhanov. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys. J. 100:799–808, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Tokarev, A. A., A. A. Butylin, E. A. Ermakova, E. E. Shnol, G. P. Panasenko, and F. I. Ataullakhanov. Finite platelet size could be responsible for platelet margination effect. Biophys. J. 101:1835–1843, 2011

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Tomaiuolo, G., V. Preziosi, M. Simeone, S. Guido, R. Ciancia, V. Martinelli, C. Rinaldi, B. Rotoli. A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro. Ann Ist Super Sanita 43:186–192, 2007.

    PubMed  Google Scholar 

  155. Tomaiuolo, G., M. Simeone, V. Martinelli, B. Rotoli, and S. Guido. Red blood cell deformation in microconfined flow. Soft Matter 5:3736–3740, 2009.

    CAS  Google Scholar 

  156. Tousia, N., B. Wang, K. Pant, M. F. Kiani, and B. Prabhakarpandian. Preferential adhesion of leukocytes near bifurcations is endothelium independent. Microvasc. Res. 80:384–388, 2010.

    Google Scholar 

  157. Uijttewaal, W. S., E. J. Nijhof, P. J. Bronkhorst, E. Den Hartog, and R. M. Heethaar. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. Am. J. Physiol. 264:H1239–H1244, 1993.

    CAS  PubMed  Google Scholar 

  158. Wang,T., T.-W. Pan, Z. W. Xing, and R. Glowinski. Numerical simulation of rheology of red blood cell rouleaux in microchannels. Phys. Rev. E 79:041916, 2009.

    CAS  Google Scholar 

  159. Waugh, R., and E. A. Evans. Thermoelasticity of red blood cell membrane. Biophys. J. 26:115–131, 1979.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.

    CAS  PubMed  Google Scholar 

  161. Wendt, J. F. (ed.). Computational Fluid Dynamics, 3rd ed. Berlin: Springer, 2009.

  162. Woldhuis, B., G. J. Tangelder, D. W. Slaaf, and R. S. Reneman. Concentration profile of blood platelets differs in arterioles and venules. Am. J. Physiol. 262:H1217–H1223, 1992.

    CAS  PubMed  Google Scholar 

  163. Yamaguchi, S., T. Yamakawa, and H. Niimi. Cell-free plasma layer in cerebral microvessels. Biorheology 29:251–260, 1992.

    CAS  PubMed  Google Scholar 

  164. Zhang, J., P. C. Johnson, and A. S. Popel. Red blood cell aggregation and dissociation in shear ows simulated by lattice Boltzmann method. J. Biomech. 41:47–55, 2008.

    PubMed Central  PubMed  Google Scholar 

  165. Zhao, H., A. H. G. Isfahani, L. N. Olson, and J. B. Freund. Molecular dynamics simulations of tethered membranes with periodic boundary conditions. J. Comput. Phys. 229:3726–3744, 2010.

    CAS  Google Scholar 

  166. Zhao, H., and E. S. G. Shaqfeh. Shear-induced platelet margination in a microchannel. Phys. Rev. E 83:061924, 2011.

    Google Scholar 

  167. Zhao, H., E. S. G. Shaqfeh, and V. Narsimhan. Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24:011902, 2012.

    Google Scholar 

  168. Zhao, Q., L. G. Durand, L. Allard, and G. Cloutier. Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power. Ultrasound Med. Biol. 24:503–511, 1998.

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH and the new Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4), sponsored by DOE. Simulations were performed at the DOE supercomputing centers via an INCITE DOE award, and at the Jülich supercomputing center. Dmitry A. Fedosov acknowledges funding by the Alexander von Humboldt Foundation. MD and SS acknowledge partial support from the Singapore-MIT Alliance for Research and Technology (SMART) Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Em Karniadakis.

Additional information

Associate Editor Gang Bao oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedosov, D.A., Dao, M., Karniadakis, G.E. et al. Computational Biorheology of Human Blood Flow in Health and Disease. Ann Biomed Eng 42, 368–387 (2014). https://doi.org/10.1007/s10439-013-0922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0922-3

Keywords

Navigation