Skip to main content
Log in

Microdroplet formation in rounded flow-focusing junctions

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Herein we report microfluidic droplet formation in flow-focusing geometries possessing varying degrees of rounding. Rounding is incorporated in all four corners (symmetric) or only in the two exit corners (asymmetric). The ratios of the radius of curvature, R, to channel width, w, are varied where R/w = 0, 0.5 and 1. In all cases, monodisperse droplets are produced, with the largest droplets being produced at the junctions with the largest rounding. Junctions without rounding are shown to produce droplets at higher frequencies than those with rounding. Droplet pinch-off position is found to be dependent on both geometry and volumetric flow rates; the location shifts toward the interior of the rounded junctions with increasing oil-to-water flow rate ratios. Accordingly, we find that rounding within microfluidic flow-focusing junctions strongly influences droplet formation. Junction rounding may be deliberate due to the selected fabrication method or occur as an unintended result of microfabrication processes not held to strict tolerances. Indeed, understanding droplet characteristics for those formed in such structures is critical for microfluidic applications where droplet volume or reagent mass must be well controlled. Thus, rounding can be a valuable design parameter when tuning the size and production frequency for emulsion collection or ensuing downstream operations such as chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abate AR, Poitzsch A, Hwang Y, Lee J, Czerwinska J, Weitz DA (2009) Impact of inlet channel geometry on microfluidic drop formation. Phys Rev E 80:026310

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  • Becker H, Dietz W, Dannberg P (1998) Microfluidic manifolds by polymer hot embossing for μ-TAS applications. In: Harrison DJ, van den Berg A (eds) Proceedings of micro total analysis systems. Kluwer, Dordrecht, pp 253–256

    Chapter  Google Scholar 

  • Bremond N, Thiam AR, Bibette J (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100:024501

    Article  Google Scholar 

  • Chokkalingam V, Weidenhof B, Krämer M, Maier WF, Herminghaus S, Seemann R (2010) Optimized droplet-based microfluidics scheme for sol–gel reactions. Lab Chip 10:1700–1705

    Article  Google Scholar 

  • Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336

    Article  Google Scholar 

  • Courtois F, Olguin LF, Whyte G, Bratton D, Huck WTS, Abell C, Hollfelder F (2008) An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets. ChemBioChem 9:439–446

    Article  Google Scholar 

  • del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17:R81–R95

    Article  Google Scholar 

  • Dittrich P, Jahnz M, Schwille P (2005) A new embedded process for compartmentalized cell-free protein expression and on-line detection in microfluidic devices. ChemBioChem 6:811–814

    Article  Google Scholar 

  • Engl W, Backov R, Panizza P (2008) Controlled production of emulsions and particles by milli- and microfluidic techniques. Curr Opin Colloid Interface Sci 13:206–216

    Article  Google Scholar 

  • Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94:164501

    Article  Google Scholar 

  • Gielen F, van Vliet L, Koprowsi BT, Devenish SRA, Fischlechner M, Edel JB, Niu X, deMello AJ, Hollfelder F (2013) A fully unsupervised compartment-on-demand platform for precise nanoliter assays of time-dependent steady-state enzyme kinetics and inhibition. Anal Chem 85:4761–4769

    Article  Google Scholar 

  • Gordan OD, Persson BNJ, Cesa CM, Mayer D, Hoffmann B, Dieluweit S, Merkel R (2008) On pattern transfer in replica molding. Langmuir 24:6636–6639

    Article  Google Scholar 

  • Griffiths C, Bigot S, Brousseau E, Worgull M, Heckele M, Nestler J, Auerswald J (2010) Investigation of polymer inserts as prototyping tooling for micro injection moulding. Int J Adv Manuf Technol 47:111–123

    Article  Google Scholar 

  • Guber AE, Heckele M, Herrmann D, Muslija A, Saile V, Eichhorn L, Gietzelt T, Hoffman W, Hauser PC, Tanjanyiwa J, Gerlach A, Gottschlich N, Knebel G (2004) Microfluidic lab-on-a-chip systems based on polymers—fabrication and application. Chem Eng J 101:447–453

    Article  Google Scholar 

  • Hupert ML, Guy WJ, Llopis SD, Shadpour H, Rani S, Nikitopoulos DE, Soper SA (2007) Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices. Microfluid Nanofluid 3:1–11

    Article  Google Scholar 

  • Jillavenkatesa A, Dapkunas SJ, Lum L-SH (2001) Particle size characterization. Special Publication 960-1. National Institute of Standards and Technology, Washington

    Google Scholar 

  • Khan SA, Gunther A, Schmidt MA, Jensen KF (2004) Microfluidic synthesis of colloidal silica. Langmuir 20:8604–8611

    Article  Google Scholar 

  • Kobayashi I, Takano T, Maeda R, Wada Y, Uemura K, Nakajima M (2008) Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluid Nanofluid 4:167–177

    Article  Google Scholar 

  • Kobayashi I, Murayama Y, Kuroiwa T, Uemura K, Nakajima M (2009) Production of monodisperse water-in-oil emulsions consisting of highly uniform droplets using asymmetric straight-through microchannel arrays. Microfluid Nanofluid 7:107–119

    Article  Google Scholar 

  • Kumar K, Nightingale AM, Krishnadasan SH, Kamaly N, Wylenzinska-Arridge M, Zeissler K, Branford WR, Ware E, deMello AJ, deMello JC (2012) Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor. J Mater Chem 22:4704–4708

    Article  Google Scholar 

  • Lee W, Walker LM, Anna SL (2009) Role of geometry and fluid properties in droplet and thread formation processing in planar flow focusing. Phys Fluids 21:032103

    Article  MATH  Google Scholar 

  • Li W, Young EWK, Seo M, Nie Z, Garstecki P, Simmons CA, Kumacheva E (2007) Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter 4:258–262

    Article  Google Scholar 

  • Lignos I, Protesescu L, Stavrakis S, Piveteau L, Speirs MJ, Loi MA, Kovalenko MV, deMello AJ (2014) Facile droplet-based microfluidic synthesis of monodisperse IV–VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection. Chem Mater 26:2975–2982

    Article  Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503

    Article  Google Scholar 

  • Liu H, Nakajima M, Nishi T, Kimura T (2005) Effect of channel structure on preparation of a water-in-oil emulsion by polymer microchannels. Eur J Lipid Sci Technol 107:481–487

    Article  Google Scholar 

  • Liu K, Zhao L-B, Zeng Q, Guo Z-X, Liu J, Zhao X-Z (2007) Injection angle dependence in flow focusing based droplet formation. In: 1st international conference on bioinformatics and biomedical engineering (ICBBE), pp. 1121–1124

  • Mulligan MK, Rothstein JP (2012) Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries. Microfluid Nanofluid 13:65–73

    Article  Google Scholar 

  • Nie Z, Seo M, Xu S, Lewis PC, Mok M, Kumacheva E, Whitesides GM, Garstecki P, Stone HA (2008) Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluid 5:585–594

    Article  Google Scholar 

  • Niu X, Gulati S, Edel JB, deMello AJ (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip 8:1837–1841

    Article  Google Scholar 

  • Niu X, Gielen F, Edel JB, deMello AJ (2011) A microdroplet dilutor for high-throughput screening. Nat Chem 3:437–442

    Article  Google Scholar 

  • Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM (2002) Improved pattern transfer in soft lithography using composite stamps. Langmuir 18:5314–5320

    Article  Google Scholar 

  • Romero PA, Abate AR (2012) Flow focusing geometry generates droplets through a plug and squeeze mechanism. Lab Chip 12:5130–5132

    Article  Google Scholar 

  • Song H, Ismagilov RF (2003) Milliseconds kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619

    Article  Google Scholar 

  • Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42:768–772

    Article  Google Scholar 

  • Srisa-Art M, Bonzani IC, Williams A, Stevens MM, deMello AJ, Edel JB (2009) Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst 134:2239–2245

    Article  Google Scholar 

  • Subramanian B, Kim N, Lee W, Spivak DA, Nikitopoulos DE, McCarley RL, Soper DA (2011) Surface modification of droplet polymeric microfluidic devices for the stable and continuous generation of aqueous droplets. Langmuir 27:7949–7957

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Seki M (2002) Effect of channel structure on microchannel emulsification. Langmuir 18:5708–5712

    Article  Google Scholar 

  • Tan Y-C, Cristini V, Lee AP (2006) Monodisperse microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B 114:350–356

    Article  Google Scholar 

  • Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed 49:5846–5868

    Article  Google Scholar 

  • Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and capillary numbers. Langmuir 19:9127–9133

    Article  Google Scholar 

  • Um E, Lee D-S, Pyo H-B, Park J-K (2008) Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel. Microfluid Nanofluid 5:541–549

    Article  Google Scholar 

  • van Dijke K, Veldhuis G, Schroen K, Boom R (2009) Parallelized edge-based droplet (EDGE) devices. Lab Chip 9:2824–2830

    Article  Google Scholar 

  • Wong S, Guo W-H, Hoffecker I, Wang Y-L (2014) Preparation of a micropatterned rigid-soft composite substrate for probing cellular rigidity sensing. In: Piel M, Thery M (eds) Methods in cell biology: micropatterning in cell biology part C, vol 121. Elsevier, Oxford, pp 3–15

    Chapter  Google Scholar 

  • Wu N, Zhu Y, Brown S, Oakeshott J, Peat TS, Surjadi R, Easton C, Leech PW, Sexton BA (2009) A PMMA microfluidic droplet platform for in vitro protein expression using crude E. Coli S30 extract. Lab Chip 9:3391–3398

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  Google Scholar 

  • Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44:724–728

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the RCUK Microdroplets Basic Technology Project (EP/D048664/1). The authors would like to thank Joshua B. Edel and Andrew J. deMello for useful discussions and the use of their cleanroom facilities to fabricate devices. SG and WG would like to acknowledge support from the School of Engineering and Computer Science at University of the Pacific.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelly Gulati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulati, S., Vijayakumar, K., Good, W.W. et al. Microdroplet formation in rounded flow-focusing junctions. Microfluid Nanofluid 20, 2 (2016). https://doi.org/10.1007/s10404-015-1680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-015-1680-3

Keywords

Navigation