Skip to main content
Log in

Electrohydrodynamics around single ion-permselective glass beads fixed in a microfluidic device

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This work demonstrates by direct visualization using confocal laser scanning microscopy that the application of electrical fields to a single-fixed, ion-permselective glass bead produces a remarkable complexity in both the coupled mass and charge transport through the bead and the coupled electrokinetics and hydrodynamics in the adjoining bulk electrolyte. The visualization approach enables the acquisition of a wealth of information, forming the basis for a detailed analysis of the underlying effects (e.g., ion-permselectivity, concentration polarization, nonequilibrium electroosmotic slip) and an understanding of electrohydrodynamic phenomena at charge-selective interfaces under more general conditions. The device used for fixing single beads in a microfluidic channel is flexible and allows to investigate the electrohydrodynamics in both transient and stationary regimes under the influence of bead shape, pore size and surface charge density, mobile phase composition, and applied volume forces. This insight is relevant for the design of microfluidic/nanofluidic interconnections and addresses the ionic conductance of discrete nanochannels, as well as nanoporous separation and preconcentration units contained as hybrid configurations, membranes, packed beds, or monoliths in lab-on-a-chip devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barany S (1998) Complex electrosurface investigations of dispersed microphases. Adv Colloid Interface Sci 75:45–78

    Article  Google Scholar 

  • Barany S, Mishchuk NA, Prieve DC (1998) Superfast electrophoresis of conducting dispersed particles. J Colloid Interface Sci 207:240–250

    Article  Google Scholar 

  • Belova EI, Lopatkova GY, Pismenskaya ND, Nikonenko VV, Larchet C, Pourcelly G (2006) Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer. J Phys Chem B 110:13458–13469

    Article  Google Scholar 

  • Ben Y, Chang HC (2002) Nonlinear Smoluchowski slip velocity and micro-vortex generation. J Fluid Mech 461:229–238

    Article  MathSciNet  MATH  Google Scholar 

  • Ben Y, Demekhin EA, Chang HC (2004) Nonlinear electrokinetics and “superfast” electrophoresis. J Colloid Interface Sci 276:483–497

    Article  Google Scholar 

  • Chang H, Venkatesan BM, Iqbal SM, Andreadakis G, Kosari F, Vasmatzis G, Peroulis D, Bashir R (2006) DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor. Biomed Microdevices 8:263–269

    Article  Google Scholar 

  • Chatterjee AN, Cannon DM, Gatimu EN, Sweedler JV, Aluru NR, Bohn PW (2005) Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. J Nanopart Res 7:507–516

    Article  Google Scholar 

  • Chen Z, Wang P, Chang HC (2005) An electroosmotic micropump based on monolithic silica for microflow analysis and electrosprays. Anal Bioanal Chem 382:817–824

    Article  Google Scholar 

  • Choi JH, Kim SH, Moon SH (2001a) Heterogeneity of ion-exchange membranes: the effects of membrane heterogeneity on transport properties. J Colloid Interface Sci 241:120–126

    Article  Google Scholar 

  • Choi JH, Lee HJ, Moon SH (2001b) Effects of electrolytes on the transport phenomena in a cation-exchange membrane. J Colloid Interface Sci 238:188–195

    Article  Google Scholar 

  • Choudhary G, Horváth C (1997) Dynamics of capillary electrochromatography: experimental study of the electroosmotic flow and conductance in open and packed capillaries. J Chromatogr A 781:161–183

    Article  Google Scholar 

  • Cui H, Horiuchi K, Dutta P, Ivory CF (2005) Multistage isoelectric focusing in a polymeric microfluidic chip. Anal Chem 77:7878–7886

    Article  Google Scholar 

  • Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142

    Article  Google Scholar 

  • Deyl Z, Svec F (2001) Capillary electrochromatography. Elsevier, Amsterdam

    Google Scholar 

  • Dittmann MM, Wienand K, Bek F, Rozing GP (1995) Theory and practice of capillary electrochromatography. LC GC 13:800–814

    Google Scholar 

  • Dhopeshwarkar R, Sun L, Crooks RM (2005) Electrokinetic concentration enrichment within a microfluidic device using a hydrogel plug. Lab Chip 5:1148–1154

    Article  Google Scholar 

  • Dukhin SS (1991) Electrokinetic phenomena of the second kind and their applications. Adv Colloid Interface Sci 35:173–196

    Article  Google Scholar 

  • Eijkel JCT, van den Berg A (2006) Nanotechnology for membranes, filters, and sieves. Lab Chip 6:19–23

    Article  Google Scholar 

  • Foote RS, Khandurina J, Jacobson SC, Ramsey JM (2005) Preconcentration of proteins in microfluidic devices using porous silica membranes. Anal Chem 77:57–63

    Article  Google Scholar 

  • Ghosal S (2006) Electrokinetic flow and dispersion in capillary electrophoresis. Annu Rev Fluid Mech 38:309–338

    Article  MathSciNet  Google Scholar 

  • Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal Chem 78:4976–4984

    Article  Google Scholar 

  • Helfferich F (1995) Ion exchange. Dover, New York

    Google Scholar 

  • Hlushkou D, Seidel-Morgenstern A, Tallarek U (2005) Numerical analysis of electroosmotic flow in regular and random arrays of impermeable, nonconducting spheres. Langmuir 21:6097–6112

    Article  Google Scholar 

  • Höltzel A, Tallarek U (2007) Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics. J Sep Sci 30:1398–1419

    Article  Google Scholar 

  • Hu YD, Lee JSH, Werner C, Li DQ (2006) Electrokinetically controlled concentration gradients in micro-chambers in microfluidic systems. Microfluid Nanofluid 2:141–153

    Article  Google Scholar 

  • Ibanez R, Stamatialis DF, Wessling M (2004) Role of membrane surface in concentration polarization at cation exchange membranes. J Memb Sci 239:119–128

    Article  Google Scholar 

  • Jung B, Bharadwaj R, Santiago JG (2006) On-chip millionfold sample stacking using transient isotachophoresis. Anal Chem 78:2319–2327

    Article  Google Scholar 

  • Kang YJ, Yang C, Huang XY (2005) Analysis of electroosmotic flow in a microchannel packed with microspheres. Microfluid Nanofluid 1:168–176

    Article  Google Scholar 

  • Kelly RT, Woolley AT (2005) Electric field gradient focusing. J Sep Sci 28:1985–1993

    Article  Google Scholar 

  • Kim SM, Burns MA, Hasselbrink EF (2006) Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal Chem 78:4779–4785

    Article  Google Scholar 

  • Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202

    Article  Google Scholar 

  • Kuo TC, Cannon DM, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75:1861–1867

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64

    Article  Google Scholar 

  • Li D (2004) Electrokinetics in microfluidics. Elsevier, Burlington

    Book  Google Scholar 

  • Li QL, Fang YF, Green ME (1983) Turbulent light-scattering fluctuation spectra near a cation electrodialysis membrane. J Colloid Interface Sci 91:412–417

    Article  Google Scholar 

  • Leinweber FC, Tallarek U (2004) Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Langmuir 20:11637–11648

    Article  Google Scholar 

  • Leinweber FC, Tallarek U (2005) Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis. J Phys Chem B 109:21481–21485

    Article  Google Scholar 

  • Leinweber FC, Pfafferodt M, Seidel-Morgenstern A, Tallarek U (2005) Electrokinetic effects on the transport of charged analytes in biporous media with discrete ion-permselective regions. Anal Chem 77:5839–5850

    Article  Google Scholar 

  • Lyklema J (1995) Fundamentals of colloid and interface science, vol II: solid–liquid interfaces. Academic, San Diego

    Google Scholar 

  • Manzanares JA, Kontturi K, Mafé S, Aguilella VM, Pellicer J (1991) Polarization effects at the cation-exchange–membrane solution interface. Acta Chem Scand 45:115–121

    Article  Google Scholar 

  • Manzanares JA, Murphy WD, Mafé S, Reiss H (1993) Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes. J Phys Chem 97:8524–8530

    Article  Google Scholar 

  • Mishchuk NA, Dukhin SS (2002) Electrokinetic phenomena of the second kind. In: Delgado AV (ed) Interfacial electrokinetics and electrophoresis. Marcel Dekker, New York, pp 241–275

    Google Scholar 

  • Mishchuk NA, Takhistov PV (1995) Electroosmosis of the second kind. Colloids Surf A 95:119–131

    Article  Google Scholar 

  • Mishchuk NA, Gonzalez-Caballero F, Takhistov P (2001) Electroosmosis of the second kind and current through curved interface. Colloids Surf A 181:131–144

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Nischang I, Tallarek U (2007) Fluid dynamics in capillary and chip electrochromatography. Electrophoresis 28:611–626

    Article  Google Scholar 

  • Nischang I, Chen G, Tallarek U (2006a) Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds. J Chromatogr A 1109:32–50

    Article  Google Scholar 

  • Nischang I, Spannmann K, Tallarek U (2006b) Key to analyte migration and retention in electrochromatography. Anal Chem 78:3601–3608

    Article  Google Scholar 

  • Probstein RF (1994) Physicochemical hydrodynamics. Wiley, New York

    Google Scholar 

  • Pumera M (2005) Microchip-based electrochromatography: designs and applications. Talanta 66:1048–1062

    Article  Google Scholar 

  • Raats MHM, van Diemen AJG, Lavèn J, Stein HN (2002) Full scale electrokinetic dewatering of waste sludge. Colloids Surf A 210:231–241

    Article  Google Scholar 

  • Rubinstein I, Zaltzman B (1999) Electroconvective mechanisms in concentration polarization at electrodialysis membranes. In: Sørensen TS (ed) Surface chemistry and electrochemistry of membranes. Marcel Dekker, New York, pp 591–621

    Google Scholar 

  • Rubinstein I, Zaltzman B (2000) Electroosmotically induced convection at a permselective membrane. Phys Rev E 62:2238–2251

    Article  MathSciNet  Google Scholar 

  • Rubinstein I, Zaltzman B, Pretz J, Linder C (2002) Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane. Russ J Electrochem 38:853–863

    Article  Google Scholar 

  • Rubinstein I, Zaltzman B, Lerman I (2005) Electroconvective instability in concentration polarization and nonequilibrium electroosmotic slip. Phys Rev E 72:011505

    Article  Google Scholar 

  • Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Crit Rev Environ Sci Technol 35:115–192

    Article  Google Scholar 

  • Schmuhl R, Nijdam W, Sekulić J, Roy Chowdhury S, van Rijn CJM, van den Berg A, ten Elshof JE, Blank DHA (2005) Si-supported mesoporous and microporous oxide interconnects as electrophoretic gates for application in microfluidic devices. Anal Chem 77:178–184

    Article  Google Scholar 

  • Schmuhl R, van den Berg A, Blank DHA, ten Elshof JE (2006) Surfactant-modulated switching of molecular transport in nanometer-sized pores of membrane gates. Angew Chem Int Ed Engl 45:3341–3345

    Article  Google Scholar 

  • Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1:2–21

    Article  Google Scholar 

  • Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735–746

    Article  Google Scholar 

  • Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett 6:89–95

    Article  Google Scholar 

  • Stachowiak TB, Svec F, Fréchet JMJ (2004) Chip electrochromatography. J Chromatogr A 1044:97–111

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • Svec F (2005) Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J Sep Sci 28:729–745

    Article  Google Scholar 

  • Tallarek U, Pačes M, Rapp E (2003) Perfusive flow and intraparticle distribution of a neutral analyte in capillary electrochromatography. Electrophoresis 24:4241–4253

    Article  Google Scholar 

  • Verpoorte E, de Rooij N (2003) Microfluidics meets MEMS. Proc IEEE 91:930–953

    Article  Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation: critical overview. Sci Total Environ 289:97–121

    Article  Google Scholar 

  • Volodina E, Pismenskaya N, Nikonenko V, Larchet C, Pourcelly G (2005) Ion transfer across ion-exchange membranes with homogeneous and heterogeneous surfaces. J Colloid Interface Sci 285:247–258

    Article  Google Scholar 

  • Wang SC, Lai YW, Ben Y, Chang HC (2004) Microfluidic mixing by dc and ac nonlinear electrokinetic vortex flows. Ind Eng Chem Res 43:2902–2911

    Article  Google Scholar 

  • Wang YC, Stevens AL, Han J (2005) Million-fold preconcentation of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299

    Article  Google Scholar 

  • Wang P, Chen ZL, Chang HC (2006) A new electroosmotic pump based on silica monoliths. Sens Actuators B 113:500–509

    Article  Google Scholar 

  • Wong PK, Wang TH, Deval JH, Ho CM (2004) Electrokinetics in micro devices for biotechnology applications. IEEE ASME Trans Mechatron 9:366–376

    Article  Google Scholar 

  • Yao SH, Myers AM, Posner JD, Rose KA, Santiago JG (2006) Electroosmotic pumps fabricated from porous silicon membranes. J Microelectromech Syst 15:717–728

    Article  Google Scholar 

  • Yu A, Lee SB, Martin CR (2003) Electrophoretic protein transport in gold nanotube membranes. Anal Chem 75:1239–1244

    Article  Google Scholar 

  • Zabolotsky VI, Manzanares JA, Nikonenko VV, Lebedev KA, Lovtsov EG (2002) Space charge effect on competitive ion transport through ion-exchange membranes. Desalination 147:387–392

    Article  Google Scholar 

  • Zabolotsky VI, Lebedev KA, Lovtsov EG (2006) Mathematical model for the overlimiting state of an ion-exchange membrane system. Russ J Electrochem 42:836–846

    Article  Google Scholar 

  • Zilberstein GV, Baskin EM, Bukshpan S (2003) Parallel processing in the isoelectric focusing chip. Electrophoresis 24:3735–3744

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (Bonn, Germany) under grants TA 268/2 and HL 56/1, as well as by the Fonds der Chemischen Industrie (Frankfurt a.M., Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Tallarek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlert, S., Hlushkou, D. & Tallarek, U. Electrohydrodynamics around single ion-permselective glass beads fixed in a microfluidic device. Microfluid Nanofluid 4, 471–487 (2008). https://doi.org/10.1007/s10404-007-0200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0200-5

Keywords

Navigation