Skip to main content
Log in

Spatial impulse waves: wave height decay experiments at laboratory scale

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Impulse waves generated by rapid subaerial landslides into water bodies may pose a threat to riparian settlements and infrastructure. Empirically derived prediction equations based on experiments at laboratory scale provide information on key wave characteristics for preliminary hazard assessment. This research discusses existing prediction methods for spatial wave propagation features and compares their results with own impulse wave height decay experiments. While some prediction methods are based on simplified approaches for wave generation such as rigid body slides, others take only limited sets of slide parameters into account, narrowing their range of applicability considerably. The prediction methods are intentionally applied outside their ranges of applicability with the aim to assess their characteristics on an extended parameter range. It is found that a combination of separate terms for wave generation and wave propagation from two different existing prediction methods provides the best representation of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ataie-Ashtiani B, Malek-Mohammadi S (2008) Mapping impulsive waves due to sub-aerial landslides into a dam reservoir: a case study of Shafa-Roud Dam. Dam Eng 18(4):243–269

    Google Scholar 

  • Ataie-Ashtiani B, Nik-khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8(3):263–280. doi:10.1007/s10652-008-9074-7

    Article  Google Scholar 

  • Battaglia D, Strozzi T, Bezzi A (2015) Landslide hazard: risk zonation and impact wave analysis for the Bumbuma Dam—Sierra Leone. In: Lollino G (ed) Engineering geology for society and territory 2. Springer International Publishing, Cham, pp 1129–1134. doi:10.1007/978-3-319-09057-3_199

    Google Scholar 

  • Bornhold BD, Harper JR, McLaren D, Thomson RE (2007) Destruction of the first nations village of Kwalate by a rock avalanche‐generated tsunami. Atmos Ocean 45(2):123–128. doi:10.3137/ao.450205

    Article  Google Scholar 

  • Chaudhry MH, Mercer A, Cass D (1983) Modeling of slide‐generated waves in a reservoir. J Hydraul Eng 109(11):1505–1520. doi:10.1061/(ASCE)0733-9429(1983)109:11(1505)

    Article  Google Scholar 

  • Chen HY, Cui P, Chen XQ, Zhu XH, Zhou GG (2015) Laboratory experiments of water pressure loads acting on a downstream dam caused by ice avalanches. Landslides 12(6):1131–1138. doi:10.1007/s10346-014-0532-7

    Article  Google Scholar 

  • Davidson DD, McCartney BL (1975) Water waves generated by landslides in reservoirs. J Hydraul Div ASCE 101(12):1489–1501

    Google Scholar 

  • Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists, Advanced series on ocean engineering 2. World Scientific, Singapore

    Book  Google Scholar 

  • Di Risio M, De Girolamo P, Bellotti G, Panizzo A, Aristodemo F, Molfetta MG, Petrillo AF (2009) Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J Geophys Res 114:C01009. doi:10.1029/2008JC004858

    Article  Google Scholar 

  • Evans SG (1989) The 1946 Mount Colonel Foster rock avalanche and associated displacement wave, Vancouver Island, British Columbia. Can Geotech J 26(3):447–452. doi:10.1139/t89-057

    Article  Google Scholar 

  • Evers FM, Hager WH (2015a) Videometric water surface tracking: towards investigating spatial impulse waves. Proc. 36th IAHR Congress, The Hague

  • Evers FM, Hager WH (2015b) Impulse wave generation: comparison of free granular with mesh-packed slides. J Mar Sci Technol 3:100–110. doi:10.3390/jmse3010100

    Google Scholar 

  • Fritz HM, Hager WH, Minor H-E (2003) Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp Fluids 35(6):520–532. doi:10.1007/s00348-003-0660-7

    Article  Google Scholar 

  • Fuchs H, Boes RM, Pfister M (2011) Impulse waves at Kühtai Reservoir generated by avalanches and landslides. Proc. 79th Ann. Meeting of ICOLD “Dams and Reservoirs under Changing Challenges” Lucerne, 701–708

  • Harbitz CB, Glimsdal S, Løvholt F, Kveldsvik V, Pedersen GK, Jensen A (2014) Rockslide tsunamis in complex fjords: from an unstable rock slope at Åkerneset to tsunami risk in western Norway. Coast Eng 88:101–122. doi:10.1016/j.coastaleng.2014.02.003

    Article  Google Scholar 

  • Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coast Ocean Eng 136(3):145–155. doi:10.1061/(ASCE)WW.1943-5460.0000037

    Article  Google Scholar 

  • Heller V, Spinneken J (2015) On the effect of the water body geometry on landslide–tsunamis: physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coast Eng 104:113–134. doi:10.1016/j.coastaleng.2015.06.006

    Article  Google Scholar 

  • Heller V, Hager WH, Minor H-E (2008) Scale effects in subaerial landslide generated impulse waves. Exp Fluids 44(5):691–703. doi:10.1007/s00348-007-0427-7

    Article  Google Scholar 

  • Heller V, Hager WH, Minor H-E (2009) Landslide generated impulse waves in reservoirs: basics and computation. In: Minor H-E (ed) VAW-Mitteilung 211. ETH Zurich, Zürich

    Google Scholar 

  • Huang B, Yin Y, Liu G, Wang S, Chen X, Huo Z (2012) Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008. Landslides 9(3):395–405. doi:10.1007/s10346-012-0331-y

    Article  Google Scholar 

  • Huang B, Yin Y, Wang S, Chen X, Liu G, Jiang Z, Liu J (2014) A physical similarity model of an impulsive wave generated by Gongjiafang landslide in Three Gorges Reservoir, China. Landslides 11(3):513–525. doi:10.1007/s10346-013-0453-x

    Article  Google Scholar 

  • Huber A, Hager WH (1997) Forecasting impulse waves in reservoirs. Proc. 19th Congrès des Grands Barrages Florence, C.31, 993–1005. ICOLD, Paris

  • Lindstrøm EK, Pedersen GK, Jensen A, Glimsdal S (2014) Experiments on slide generated waves in a 1: 500 scale fjord model. Coast Eng 92:12–23. doi:10.1016/j.coastaleng.2014.06.010

    Article  Google Scholar 

  • Liu PL-F, Wu TR, Raichlen F, Synolakis CE, Borrero JC (2005) Runup and rundown generated by three-dimensional sliding masses. J Fluid Mech 536:107–144. doi:10.1017/S0022112005004799

    Article  Google Scholar 

  • Miller DJ (1960) The Alaska earthquake of July 10, 1958: giant wave in Lituya Bay. Bull Seismol Soc Am 50(2):253–266

    Google Scholar 

  • Mohammed F, Fritz HM (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res 117:C11015. doi:10.1029/2011JC007850

    Article  Google Scholar 

  • Panizzo A, De Girolamo P, Petaccia A (2005) Forecasting impulse waves generated by subaerial landslides. J Geophys Res 110:C12025. doi:10.1029/2004JC002778

    Article  Google Scholar 

  • Plafker G, Eyzaguirre VR (1979) Rock avalanche and wave at Chungar, Peru. In: Voight B (ed) Developments in geotechnical engineering 14B, rockslides and avalanches 2, engineering sites. Elsevier Scientific Publishing, Amsterdam, pp 269–279

    Chapter  Google Scholar 

  • Richardson SD, Reynolds JM (2000) An overview of glacial hazards in the Himalayas. Quat Int 65/66:31–47. doi:10.1016/S1040-6182(99)00035-X

    Article  Google Scholar 

  • Risley JC, Walder JS, Denlinger RP (2006) Usoi dam wave overtopping and flood routing in the Bartang and Panj Rivers, Tajikistan. Nat Hazards 38(3):375–390. doi:10.1007/s11069-005-1923-9

    Article  Google Scholar 

  • Roberts NJ, McKillop RJ, Lawrence MS, Psutka JF, Clague JJ, Brideau MA, Ward BC (2013) Impacts of the 2007 landslide-generated tsunami in Chehalis Lake, Canada. In: Margottini C (ed) Landslide science and practice 7. Springer, Berlin Heidelberg, pp 133–140. doi:10.1007/978-3-642-31319-6_19

    Chapter  Google Scholar 

  • Roberts NJ, McKillop R, Hermanns RL, Clague JJ, Oppikofer T (2014) Preliminary global catalogue of displacement waves from subaerial landslides. In: Sassa K (ed) Landslide science for a safer geoenvironment 3. Springer International Publishing, Cham, pp 687–692. doi:10.1007/978-3-319-04996-0_104

    Chapter  Google Scholar 

  • Schaub Y, Haeberli W, Huggel C, Künzler M, Bründl M (2013) Landslides and new lakes in deglaciating areas: a risk management framework. In: Margottini C (ed) Landslide science and practice 7. Springer, Berlin Heidelberg, pp 31–38. doi:10.1007/978-3-642-31313-4_5

    Chapter  Google Scholar 

  • Sepúlveda SA, Serey A, Lara M, Pavez A, Rebolledo S (2010) Landslides induced by the April 2007 Aysén fjord earthquake, Chilean Patagonia. Landslides 7(4):483–492. doi:10.1007/s10346-010-0203-2

    Article  Google Scholar 

  • Slingerland RL, Voight B (1979) Occurrences, properties, and predictive models of landslide-generated water waves. In: Voight B (ed) Developments in geotechnical engineering 14B, rockslides and avalanches 2, engineering sites. Elsevier Scientific Publishing, Amsterdam, pp 317–397

    Chapter  Google Scholar 

  • Vuichard D, Zimmermann M (1987) The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal: cause and consequences. Mt Res Dev 7(2):91–110. doi:10.2307/3673305

    Article  Google Scholar 

  • Walder JS, Watts P, Sorensen OE, Janssen K (2003) Tsunamis generated by subaerial mass flows. J Geophys Res 108(B5):2156–2202. doi:10.1029/2001JB000707

    Article  Google Scholar 

  • Wieczorek GF, Geist EL, Motyka RJ, Jakob M (2007) Hazard assessment of the tidal inlet landslide and potential subsequent tsunami, Glacier Bay National Park, Alaska. Landslides 4(3):205–215. doi:10.1007/s10346-007-0084-1

    Article  Google Scholar 

  • Yavari-Ramshe S, Ataie-Ashtiani B (2015) A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves. Landslides. doi:10.1007/s10346-015-0662-6, 1–19

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (Project No. 200021-143657/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic M. Evers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evers, F.M., Hager, W.H. Spatial impulse waves: wave height decay experiments at laboratory scale. Landslides 13, 1395–1403 (2016). https://doi.org/10.1007/s10346-016-0719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0719-1

Keywords

Navigation