Skip to main content

Advertisement

Log in

Comparison of arterial transit times estimated using arterial spin labeling

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

To compare arterial transit time estimates from two efficient transit time mapping techniques using arterial spin labeling (ASL)—flow encoded arterial spin tagging (FEAST) and Look-Locker ASL (LL-ASL). The effects of bipolar gradients and label location were investigated.

Materials and methods

Six healthy subjects were scanned with pseudo-continuous ASL (pCASL) FEAST and pulsed (PASL) and pCASL variants of LL-ASL at different labeling locations with and without bipolar gradients. Application of transit time mapping was demonstrated in a clinical case.

Results

Mean (±SD) macrovascular transit times were 363 ± 39, 676 ± 73 and 908 ± 170 ms for LL-PASL, LL-pCASL with labeling offsets of 60 and 90 mm respectively, showing linear dependence on labeling locations. Mean microvascular transit time for LL-pCASL was 1,463±135 ms, in good agreement with the FEAST estimate of 1,444 ± 128 ms. Data acquired from a patient with stroke demonstrate how transit time and CBF maps provide complementary information for clinical diagnosis.

Conclusion

Both FEAST and LL-ASL provide transit time information in clinically acceptable scan times. Bipolar gradients can be used to tailor transit time estimates for different experimental and clinical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASL:

Arterial spin labeling

CBF:

Cerebral blood flow

rf:

Radio frequency

TI:

Inversion time

LL:

Look-Locker

TR:

Repetition time

FEAST:

Flow encoding arterial spin tagging

TE:

Echo time

PASL:

Pulsed arterial spin labeling

pCASL:

Pseudo-continuous arterial spin labeling

ROI:

Regions of interest

SD:

Standard deviation

References

  1. Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39(5): 702–708

    Article  PubMed  CAS  Google Scholar 

  2. Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16(6): 1236–1249

    Article  PubMed  CAS  Google Scholar 

  3. Kimura H, Kado H, Koshimoto Y, Tsuchida T, Yonekura Y, Itoh H (2005) Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging 22(2): 189–198

    Article  PubMed  Google Scholar 

  4. MacIntosh BJ, Lindsay AC, Kylintireas I, Kuker W, Gunther M, Robson MD, Kennedy J, Choudhury RP, Jezzard P (2010) Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. AJNR Am J Neuroradiol 31(10): 1892–1894

    Article  PubMed  CAS  Google Scholar 

  5. van Laar PJ, van der Grond J, Bremmer JP, Klijn CJ, Hendrikse J (2008) Assessment of the contribution of the external carotid artery to brain perfusion in patients with internal carotid artery occlusion. Stroke 39(11): 3003–3008

    Article  PubMed  Google Scholar 

  6. Figueiredo PM, Clare S, Jezzard P (2005) Quantitative perfusion measurements using pulsed arterial spin labeling: effects of large region-of-interest analysis. J Magn Reson Imaging 21(6): 676–682

    Article  PubMed  Google Scholar 

  7. Gonzalez-At JB, Alsop DC, Detre JA (2000) Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med 43(5): 739–746

    Article  PubMed  CAS  Google Scholar 

  8. Yang Y, Engelien W, Xu S, Gu H, Silbersweig DA, Stern E (2000) Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magn Reson Med 44(5): 680–685

    Article  PubMed  CAS  Google Scholar 

  9. Gunther M, Bock M, Schad LR (2001) Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 46(5): 974–984

    Article  PubMed  CAS  Google Scholar 

  10. Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salvucci AE, Detre JA (2003) Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 50(3): 599–607

    Article  PubMed  Google Scholar 

  11. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40(3): 383–396

    Article  PubMed  CAS  Google Scholar 

  12. Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34(3): 293–301

    Article  PubMed  CAS  Google Scholar 

  13. Mugler JP 3rd, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1): 152–157

    Article  PubMed  Google Scholar 

  14. Tatu L, Moulin T, Bogousslavsky J, Duvernoy H (1998) Arterial territories of the human brain: cerebral hemispheres. Neurology 50(6): 1699–1708

    PubMed  CAS  Google Scholar 

  15. Wang J, Alsop DC, Li L, Listerud J, Gonzalez-At JB, Schnall MD, Detre JA (2002) Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 48(2): 242–254

    Article  PubMed  Google Scholar 

  16. Liu P, Uh J, Lu H (2011) Determination of spin compartment in arterial spin labeling MRI. Magn Reson Med 65(1): 120–127

    Article  PubMed  Google Scholar 

  17. Mildner T, Moller HE, Driesel W, Norris DG, Trampel R (2005) Continuous arterial spin labeling at the human common carotid artery: the influence of transit times. NMR Biomed 18(1): 19–23

    Article  PubMed  Google Scholar 

  18. Wells JA, Lythgoe MF, Choy M, Gadian DG, Ordidge RJ, Thomas DL (2009) Characterizing the origin of the arterial spin labelling signal in MRI using a multiecho acquisition approach. J Cereb Blood Flow Metab 29(11): 1836–1845

    Article  PubMed  Google Scholar 

  19. Wang J, Fernandez-Seara MA, Wang S, St Lawrence KS (2007) When perfusion meets diffusion: in vivo measurement of water permeability in human brain. J Cereb Blood Flow Metab 27(4): 839–849

    PubMed  Google Scholar 

  20. Cebral JR, Castro MA, Putman CM, Alperin N (2008) Flow-area relationship in internal carotid and vertebral arteries. Physiol Meas 29(5): 585–594

    Article  PubMed  CAS  Google Scholar 

  21. Marshall I, Papathanasopoulou P, Wartolowska K (2004) Carotid flow rates and flow division at the bifurcation in healthy volunteers. Physiol Meas 25(3): 691–697

    Article  PubMed  Google Scholar 

  22. Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT (2006) Velocity-selective arterial spin labeling. Magn Reson Med 55(6): 1334–1341

    Article  PubMed  Google Scholar 

  23. Hendrikse J, Petersen ET, van Laar PJ, Golay X (2008) Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 246(2): 572–580

    Article  PubMed  Google Scholar 

  24. Gardener AG, Gowland PA, Francis ST (2009) Implementation of quantitative perfusion imaging using pulsed arterial spin labeling at ultra-high field. Magn Reson Med 61(4): 874–882

    Article  PubMed  CAS  Google Scholar 

  25. Pittman RN (2005) Oxygen transport and exchange in the microcirculation. Microcirculation 12(1): 59–70

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Wang, D.J.J. & Detre, J.A. Comparison of arterial transit times estimated using arterial spin labeling. Magn Reson Mater Phy 25, 135–144 (2012). https://doi.org/10.1007/s10334-011-0276-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-011-0276-5

Keywords

Navigation