Skip to main content

Advertisement

Log in

Microdomain evolution on giant unilamellar vesicles

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A chemo-mechanical model is used to capture the formation and evolution of microdomains on the deforming surface of giant unilamellar vesicles. The model is intended for the regime of vesicle dynamics characterized by a distinct difference in time scales between shape change and species transport. This is achieved by ensuring that shape equilibrium holds away from chemical equilibrium. Conventional descriptions are used to define the curvature and chemical contributions to the vesicle energetics. Both contributions are consistently non-dimensionalized. The phase-field framework is used to cast the coupled model in a diffuse-interface form. The resulting fourth-order nonlinear system of equations is discretized using the finite- element method with a uniform cubic spline basis, which satisfies global higher-order continuity. Two-dimensional and axisymmetric numerical examples of domain evolution coupled to vesicle shape deformation are presented. Curvature-dependent domain sorting and shape deformation dominated by line tension are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adalsteinsson D, Sethian J (2003) Transport and diffusion of material quantities on propagating interfaces via level set methods. J Comput Phys 185(1): 271–288

    Article  MathSciNet  MATH  Google Scholar 

  • Akira O (1989) Ginzburg–Landau approach to elastic effects in the phase separation of solids. J Phys Soc Jpn 58(9): 3065–3068

    Article  Google Scholar 

  • Ayton GS, McWhirter JL, Patrick M, Voth GA (2005) Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles. Biophys J 88(6): 3855–3869

    Article  Google Scholar 

  • Bartkowiak L, Pawlow I (2005) The Cahn–Hilliard–Gurtin system coupled with elasticity. Control Cybern 34(4): 1005–1043

    MathSciNet  MATH  Google Scholar 

  • Baumgart T, Das S, Webb W, Jenkins J (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys J 89(2): 1067–1080

    Article  Google Scholar 

  • Bertalmio M, Cheng LT, Osher S, Sapiro G (2001) Variational problems and partial differential equations on implicit surfaces. J Comput Phys 174(2): 759–780

    Article  MathSciNet  MATH  Google Scholar 

  • Biben T, Kassner K, Misbah C (2005) Phase-field approach to three-dimensional vesicle dynamics. Phys Rev E 72: 041921

    Article  Google Scholar 

  • Brooks AN, Hughes TJ (1982) Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations. Comput Method Appl M 32(1-3): 199–259

    Article  MathSciNet  MATH  Google Scholar 

  • Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2): 258–267

    Article  Google Scholar 

  • Campelo F, Hernández-Machado A (2006) Dynamic model and stationary shapes of fluid vesicles. Eur Phys J E 20(1): 37–45

    Article  Google Scholar 

  • Canham P (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26(1): 61–81

    Article  Google Scholar 

  • Deseri L, Piccioni MD, Zurlo G (2008) Derivation of a new free energy for biological membranes. Continuum Mech Therm 20(5): 255–273

    Article  MathSciNet  MATH  Google Scholar 

  • Elson EL, Fried E, Dolbow JE, Genin GM (2010) Phase separation in biological membranes: integration of theory and experiment. Annu Rev Biophys 39: 207–226

    Article  Google Scholar 

  • Evans E (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14(12): 923–931

    Article  Google Scholar 

  • Evans E, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Boca Raton

    Google Scholar 

  • Eyre DJ (1997) An unconditionally stable one-step scheme for gradient systems. Unpublished article

  • Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10(1): 51–61

    Article  Google Scholar 

  • Fried E (2006) On the relationship between supplemental balances in two theories for pure interface motion. SIAM J Appl Math 66(4): 1130–1149

    Article  MathSciNet  MATH  Google Scholar 

  • Fried E, Gurtin ME (1996) A phase-field theory for solidification based on a general anisotropic sharp-interface theory with interfacial energy and entropy. Physica D 91(1–2): 143–181

    Article  MathSciNet  MATH  Google Scholar 

  • Garcke H (2003) On Cahn–Hilliard systems with elasticity. Proc R Soc Edinb A 133(02): 307–331

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez-Cinca R, Folch R, Benitez R, Ramirez-Piscina L, Casademunt J, Hernandez-Machado A (2003) Phase-field models in interfacial pattern formation out of equilibrium. ArXiv Condensed Matter e-prints

  • Greer JB (2006) An improvement of a recent eulerian method for solving PDEs on general geometries. J Sci Comput 29: 321–352

    Article  MathSciNet  MATH  Google Scholar 

  • Greer JB, Bertozzi AL, Sapiro G (2006) Fourth order partial differential equations on general geometries. J Comput Phys 216(1): 216–246

    Article  MathSciNet  MATH  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C 28(11): 693–703

    Google Scholar 

  • Hess ST, Kumar M, Verma A, Farrington J, Kenworthy A, Zimmerberg J (2005) Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin. J Cell Biol 169(6): 965–976

    Article  Google Scholar 

  • Huggins ML (1942) Theory of solutions of high polymers. J Am Chem Soc 64(7): 1712–1719

    Article  Google Scholar 

  • Jamet D, Misbah C (2007) Towards a thermodynamically consistent picture of the phase-field model of vesicles: Local membrane incompressibility. Phys Rev E 76(5): 051907

    Article  Google Scholar 

  • Jülicher F, Lipowsky R (1996) Shape transformations of vesicles with intramembrane domains. Phys Rev E 53(3): 2670–2683

    Article  Google Scholar 

  • Komura S, Shirotori H, Olmsted P, Andelman D (2004) Lateral phase separation in mixtures of lipids and cholesterol. Europhys Lett 67(2): 321–327

    Article  Google Scholar 

  • Lowengrub JS, Rätz A, Voigt A (2009) Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys Rev E 79(3): 031926

    Article  Google Scholar 

  • Murray J (2002) Mathematical biology. Interdisciplinary applied mathematics. Springer, Berlin

    Google Scholar 

  • Ono A, Freed EO (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci USA 98(24): 13925–13930

    Article  Google Scholar 

  • Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47(7): 1597–1598

    Article  Google Scholar 

  • Sagui C, Somoza AM, Desai RC (1994) Spinodal decomposition in an order-disorder phase transition with elastic fields. Phys Rev E 50: 4865–4879

    Article  Google Scholar 

  • Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46(1): 13–137

    Article  Google Scholar 

  • Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44(2): 1182–1202

    Article  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633): 569–572

    Article  Google Scholar 

  • Smereka P (2006) The numerical approximation of a delta function with application to level set methods. J Comput Phys 211(1): 77–90

    Article  MathSciNet  MATH  Google Scholar 

  • Suo Z, Lu W (2000) Composition modulation and nanophase separation in a binary epilayer. J Mech Phys Solids 48(2): 211–232

    Article  MATH  Google Scholar 

  • Takeda M, Leser GP, Russell CJ, Lamb RA (2003) Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci USA 100(25): 14610–14617

    Article  Google Scholar 

  • Tsafrir I, Caspi Y, Guedeau-Boudeville MA, Arzi T, Stavans J (2003) Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91: 138102

    Article  Google Scholar 

  • Wang X, Du Q (2008) Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J Math Biol 56(3): 347–371

    Article  MathSciNet  MATH  Google Scholar 

  • Yanagisawa M, Imai M, Masui T, Komura S, Ohta T (2007) Growth dynamics of domains in ternary fluid vesicles. Biophys J 92(1): 115–125

    Article  Google Scholar 

  • Yeon DH, Cha PR, Kim JH, Grant M, Yoon JK (2005) A phase field model for phase transformation in an elastically stressed binary alloy. Model Simul Mater Sci Eng 13(3): 299–319

    Article  Google Scholar 

  • Zurlo G (2008) Material and geometric phase transitions in biological membranes. PhD thesis, Università à di Pisa

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Dolbow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Embar, A., Dolbow, J. & Fried, E. Microdomain evolution on giant unilamellar vesicles. Biomech Model Mechanobiol 12, 597–615 (2013). https://doi.org/10.1007/s10237-012-0428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0428-1

Keywords

Navigation