Skip to main content

Advertisement

Log in

Advances in search and rescue at sea

  • Editorial
  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A topical collection on “Advances in Search and Rescue at Sea” has appeared in recent issues of Ocean Dynamics following the latest in a series of workshops on “Technologies for Search and Rescue and other Emergency Marine Operations” (2004, 2006, 2008, and 2011), hosted by IFREMER in Brest, France. Here, we give a brief overview of the history of search and rescue at sea before we summarize the main results of the papers that have appeared in the topical collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abascal A, Castanedo S, Ferna´ndez V, Medina R (2012) Back-tracking drifting objects using surface currents from high-frequency (HF) radar technology. Ocean Dyn (62)7:1073–1089. doi:10.1007/s10236-012-0546-4

    Article  Google Scholar 

  • Allen A (1996) Performance of GPS/Argos self-locating datum marker buoys (SLDMBs) OCEANS’96. MTS/IEEE, Prospects for the 21st, Century. Conference Proceedings, vol 2. IEEE, pp 857–861. doi:10.1109/OCEANS.1996.568341

  • Allen A (2005) Leeway divergence report. Tech. Rep. CG-D-05-05, US coast guard research and development center, 1082 Shennecossett Road, Groton, CT, USA

  • Allen A, Plourde JV (1999) Review of leeway: field experiments and implementation. Tech. Rep. CG-D-08-99, US Coast Guard Research and Development Center, 1082 Shennecossett Road, Groton, CT, USA. Available through http://www.ntis.gov

  • Barrick D, Fernandez V, Ferrer MI, Whelan C, Breivik Ø (2012) A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network. Ocean Dyn 62:725–740. doi:10.1007/s10236-012-0521-0

    Article  Google Scholar 

  • Berloff PS, McWilliams JC (2002) Material transport in oceanic Gyres. Part II: hierarchy of stochastic models. J Phys Oceanogr 32:797–830

    Article  Google Scholar 

  • Bertino L, Lisæter K (2008) The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans. J Oper Oceanogr 1(2):15–18

    Google Scholar 

  • Breivik Ø, Olagnon M (eds) (2005) Proceedings of technologies for search, assistance and rescue workshop. Available on request from IFREMER. Brest, France, 18–20 Oct 2004

  • Breivik Ø, Allen AA (2008) An operational search and rescue model for the Norwegian Sea and the North Sea. J Marine Syst 69(1–2):99–113. doi:10.1016/j.jmarsys.2007.02.010. arXiv:1111.1102

    Article  Google Scholar 

  • Breivik Ø, Allen AA, Maisondieu C, Roth JC (2011) Wind-induced drift of objects at sea: the Leeway field method. Appl Ocean Res 33:10. doi:10.1016/j.apor.2011.01.005. arXiv:1111.0750

    Article  Google Scholar 

  • Breivik Ø, Allen A, Maisondieu C, Roth J-C, Forest B (2012a) The Leeway of shipping containers at different immersion levels. Ocean Dyn 62:741–752. doi:10.1007/s10236-012-0522-z. arXiv:1201.0603

    Article  Google Scholar 

  • Breivik Ø, Bekkvik TC, Ommundsen A, Wettre C (2012b) BAKTRAK: backtracking drifting objects using an iterative algorithm with a forward trajectory model. Ocean Dyn 62:239–252. doi:10.1007/s10236-011-0496-2. arXiv:1111.0756

    Article  Google Scholar 

  • Chapline W (1960) Estimating the drift of distressed small craft. Tech. Rep. 2, US Coast Guard Academy

  • Chen C, Limeburner R, Gao G, Xu Q, Qi J, Xue P, Lai Z, Lin H, Beardsley R, Owens B, Carlson B (2012) FVCOM model estimate of the location of Air France 447. Ocean Dyn 62:943–952. doi:10.1007/s10236-012-0537-5

    Article  Google Scholar 

  • Daniel P, Jan G, Cabioch F, Landau Y, Loiseau E (2002) Drift modeling of cargo containers. Spill Sci Technol Bull 7(5–6):279–288

    Article  Google Scholar 

  • Davidson FJM, Allen A, Brassington GB, Breivik Ø, Daniel P, Kamachi M, Sato S, King B, Lefevre F, Sutton M, Kaneko H (2009) Applications of GODAE ocean current forecasts to search and rescue and ship routing. Oceanogr 22(3):176–181. doi:10.5670/oceanog.2009.76

    Article  Google Scholar 

  • Davis RE (1985) Drifter observations of coastal surface currents during CODE: the method and descriptive view. J Geophys Res 90(C3):4741–4755

    Article  Google Scholar 

  • De Dominicis M, Leuzzi G, Monti P, Pinardi N, Poulain P-M (2012) Eddy diffusivity derived from drifter data for dispersion model applications. Ocean Dyn 62(9):1381–1398. doi:10.1007/s10236-012-0564-2

    Article  Google Scholar 

  • Drevillon M, Greiner E, Paradis D, Payan C, Lellouche J-M, Reffray G, Durand E, Chune SL, Cailleau S (2012) A strategy for producing refined currents in the Equatorial Atlantic in the context of the search of the AF447 wreckage. Ocean Dyn. doi:10.1007/s10236-012-0580-2

    Google Scholar 

  • Frolov S, Paduan J, Cook M, Bellingham J (2012) Improved statistical prediction of surface currents based on historic HF-radarobservations. Ocean Dyn 62(7):1111–1122. doi:10.1007/s10236-012-0553-5

    Article  Google Scholar 

  • Frost J, Stone L (2001) Review of search theory: advances and applications to search and rescue decision support. Tech. Rep. CG-D-15-01, US Coast Guard research and development center, 1082 Shennecossett Road, Groton, CT, USA

  • Griffa A (1996) Applications of stochastic particle models to oceanographic problems. In: Adler R, Muller P, Rozovskii B (eds) Stochastic modelling in physical oceanography. Birkhauser, Boston, pp 113–128

  • Hackett B, Breivik Ø, Wettre C (2006) Forecasting the drift of objects and substances in the oceans. In: Chassignet EP, Verron J (eds) Ocean weather forecasting. An integrated view of oceanography. Springer, pp 507–524

  • Hodgins DO, Hodgins SLM (1998) Phase II Leeway dynamics program: development and verification of a mathematical drift model for liferafts and small boats. Tech. rep. Nova Scotia, Canada

  • Holthuijsen L (2007) Waves in oceanic and coastal waters. Cambridge University Press

  • Hufford G, Broida S (1976) Estimation of the leeway drift of small craft. Ocean Eng 3(3):123–132. doi:10.1016/0029-8018(76)90028-7

    Article  Google Scholar 

  • Kohut J, Roarty H, Randall-Goodwin E, Glenn S, Lichtenwalner C (2012) Evaluation of two algorithms for a network of coastal HF radars in the Mid-Atlantic Bight. Ocean Dyn 62:953–968. doi:10.1007/s10236-012-0533-9

    Article  Google Scholar 

  • Koopman B (1946) Search and screening. Tech. Rep. 56, Office of the Chief of Naval Operations

  • Koopman B (1956a) The theory of search, part I: kinematic bases. Oper Res 4:324–346

    Article  Google Scholar 

  • Koopman B (1956b) The theory of search, part II: target detection. Oper Res 4:503–531

    Article  Google Scholar 

  • Koopman B (1957) The theory of search, part III: the optimum distribution of searching effort. Oper Res 5:613–626

    Article  Google Scholar 

  • Koopman B (1980) Search and screening: general principles with historical applications. Pergamon, New York

    Google Scholar 

  • Kratzke TM, Stone LD, Frost JR (2010) Search and rescue optimal planning system. In: Proceedings of the 13th international conference on information fusion. IEEE, p 8

  • Kuang L, Blumberg AF, Georgas N (2012) Assessing the fidelity of surface currents from a coastal ocean model and HF radar using drifting buoys in themiddle atlantic bight. Ocean Dyn 62(8):1229–1243

    Article  Google Scholar 

  • Lekien F, Coulliette C, Bank R, Marsden J (2004) Open-boundary modal analysis: interpolation, extrapolation, and filtering. J Geophys Res C 109(C12):13. doi:10.1007/10.1029/2004JC002323

    Google Scholar 

  • Maisondieu C, Breivik Ø, Roth J, Allen A, Forest B, Pavec M (2010) Methods for improvement of drift forecast models, In: 29th international conference on ocean, offshore and Arctic engineering, vol 4. ASME, pp 127–133. doi:10.1115/OMAE2010-20219

  • McGrayne S (2011) The theory that would not die: how Bayes’ rule cracked the enigma code. Hunted down Russian submarines, and emerged triumphant from two centuries of controversy. Yale University Press

  • Mei CC (1989) The applied dynamics of ocean surface waves, 2nd edn. World Scientific, Singapore

    Google Scholar 

  • Melsom A, Counillon F, LaCasce J, Bertino L (2012) Forecasting search areas using ensemble ocean circulation modeling. Ocean Dyn 62(8):1245–1257. doi:10.1007/s10236-012-0561-5

    Article  Google Scholar 

  • Murphy D, Allen A (1985) An evaluation of CASP drift predictions near the New England shelf/slope front. Tech. Rep. CG-D-16-85, US Coast Guard Research and Development Center, 1082 Shennecossett Road, Groton, CT, USA. Available through http://www.ntis.gov

  • Phillips OM (1977) The dynamics of the upper ocean, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Pingree F (1944) Forethoughts on rubber rafts. Technical Report Woods Hole Oceanographic Institution

  • Richardson HR, Discenza JH (1980) The United States coast guard computer-assisted search planning system (CASP). Nav Res Logist 27:659–680. doi:10.1002/nav.3800270413

    Article  Google Scholar 

  • Rixen M, Ferreira-Coelho E (2007) Operational surface drift prediction using linear and non-linear hyper-ensemble statistics on atmospheric and ocean models. J Marine Syst 65(1–4):105–121. doi:10.1016/j.jmarsys.2004.12.005. Marine environmental monitoring and prediction—selected papers from the 36th International Liège Colloquium on Ocean Dynamics, 36th International Liège Colloquium on Ocean Dynamics

    Article  Google Scholar 

  • Rixen M, Ferreira-Coelho E, Signell R (2008) Surface drift prediction in the adriatic sea using hyper-ensemble statistics on atmospheric, ocean and wave models: uncertainties and probability distribution areas. J Marine Syst 69(1–2):86–98. doi:10.1016/j.jmarsys.2007.02.015. Maritime rapid environmental assessment - new trends in operational oceanography

    Article  Google Scholar 

  • Röhrs J, Christensen K, Hole L, Broström G, Drivdal M, Sundby S (2012) Observation-based evaluation of surface wave effects on currents and trajectory forecasts. Ocean Dyn. doi:10.1007/s10236-012-0576-y

  • Scott R, Ferry N, Drèvillon M, Barron C, Jourdain N, Lellouche J-M, Metzger E, Rio M-H, Smedstad O (2012) Estimates of surface drifter trajectories in the equatorial Atlantic: a multi-model ensemble approach. Ocean Dyn 62(7):1091–1109. doi:10.1007/s10236-012-0548-2

    Article  Google Scholar 

  • Spaulding M, Isaji T, Hall P, Allen A (2006) A hierarchy of stochastic particle models for search and rescue (SAR): application to predict surface drifter trajectories using HF radar current forcing. J Mar Environ Eng 8(3):181

    Google Scholar 

  • Stone L (1989) Theory of optimal search, 2nd edn. INFORMS

  • Stone L, Keller C, Kratzke T, Strumpfer J (2011) Search analysis for the underwater wreckage of Air France Flight 447. In: 2011 Proceedings of the 14th international conference on information fusion (FUSION). IEEE, p 8

  • Stone LD (2013) Search theory. In: Gass S, Fu M (eds) Encyclopedia of operations research and management science. Springer

  • Suzuki T, Sato H (1977) Measurement of the drifting of a fishing boat or research vessel due to wind and wave. Journal of Japan Institute of Navigation 65(4):1225–1245. doi:10.1175/2007JAS2427.1

    Google Scholar 

  • Taylor GI (1921) Diffusion by continuous movements. Proc Lond Math Soc 20:196–211

    Article  Google Scholar 

  • US Navy Hydrographic Office (1944) Methods for locating survivors adrift at sea on rubber rafts. Technical Report 235, United States Navy Hydrographic Office

  • Vandenbulcke L, Beckers J-M, Lenartz F, Barth A, Poulain P-M, Aidonidis M, Meyrat J, Ardhuin F, Tonani M, Fratianni C, Torrisi L, Pallela D, Chiggiato J, Tudor M, Book J, Martin P, Peggion G, Rixen M (2009) Super-ensemble techniques: application to surface drift prediction. Prog Oceanogr 82(3):149–167. doi:10.1016/j.pocean.2009.06.002

    Article  Google Scholar 

  • Washburn AR (1980) On search for a moving target. Nav Res Logist Q 27:315–322

    Article  Google Scholar 

  • Whelan C, Barrick D, Lilleboe P, Breivik Ø, Kjelaas A, Fernandez V, Alonso-Martirena A (2010) Rapid deployable HF RADAR for Norwegian emergency spill operations In: OCEANS 2010 IEEE-Sydney. IEEE, pp 1–3. doi:10.1109/OCEANSSYD.2010.5603848

Download references

Acknowledgments

The conference cochairs would like to express their gratitude to the organizers and sponsors: IFREMER’s Service Hydrodynamique et Océano-météo, the Norwegian Meteorological Institute, the US Coast Guard Office of Search and Rescue, JCOMM, Region Bretagne, and the French-Norwegian Foundation. More information about the conference can be found at http://www.ifremer.fr/web-com/sar2011. We are grateful to Springer (publisher of Ocean Dynamics) for taking the topic of SAR into consideration for a special issue. Øyvind Breivik is grateful to The Joint Rescue Coordination Centres of Norway and the Norwegian Navy for their continued support through funding projects that have allowed him to help organize these workshops. The editorial work has also benefited from the European Union FP7 project MyWave (grant no 284455). Thanks finally to Jack Frost, Larry Stone, and Henry Richardson for sharing their immense knowledge of the field of search theory and for helping to unravel the early history of SAR planning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øyvind Breivik.

Additional information

Responsible Editor: Jörg-Olaf Wolff

Øyvind Breivik is on leave from the Norwegian Meteorological Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breivik, Ø., Allen, A.A., Maisondieu, C. et al. Advances in search and rescue at sea. Ocean Dynamics 63, 83–88 (2013). https://doi.org/10.1007/s10236-012-0581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-012-0581-1

Keywords

Navigation