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Abstract We study the following problem: To what extend is a surface in the
Euclidean space R

4 determined by the third fundamental form? We prove the exis-
tence of families of surfaces in R

4 which allow isometric deformations with isometric
but not congruent Gaussian images. In particular, we provide a method which gives
locally all surfaces in R

4 with conformal Gauss map that allow such deformations. As a
consequence, we have a way for constructing non-spherical pseudoumbilical surfaces
in R

4.
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1 Introduction

There has been much interest in classifying submanifolds in terms of given geomet-
ric data. Since the beginning of differential geometry the Gauss map has played
a major role in surface theory. A natural generalization of this classical map for
an isometric immersion f : Mn → R

m of an n-dimensional Riemannian manifold
Mn into the Euclidean m-space R

m is defined by assigning to each point x ∈ Mn

the space dfx(TxMn) in the Grassmannian Gn,m of n-planes in R
m. The Gauss map

g : Mn → Gn,m defined in this way has been extensively studied. In particular,
Dajczer and Gromoll [4] raised the following question: To what extend is a Euclidean
submanifold determined by its Gauss map?

In [4], they gave a complete answer to the above question by proving that the
isometric immersions with congruent Gauss maps can be described locally in terms of
circular immersions. Relevant results were obtained by Hoffman and Osserman [10],
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while Dajczer and Vergasta [6,15] studied the above question for conformal immer-
sions.

A geometric invariant that figures in the study of submanifolds is the so-called
third fundamental form III which is the pull back of the canonical metric on the
Grassmannian Gn,m via g (cf. [13]). In an attempt to generalize their theory, Dajc-
zer and Gromoll [5] treated the following question: To what extend is a Euclidean
submanifold determined by its third fundamental form?

In [5], they answered this question for the codimension-1 case (for the conformal
case see [16]). They proved that if f ,˜f : Mn → R

n+1 are non-congruent hypersurfaces
with the same third fundamental form, then f is minimal and˜f belongs locally to the
associated family of f .

In this paper we initiate the study of the case of higher codimension. It turns out
that additional interesting phenomena arise in this case.

The results in [5] motivate the study of III-deformations, a notion that may be
viewed as an generalization of the associated family of minimal surfaces. A III-
deformation of an isometric immersion f : Mn → R

m is a one-parameter family of
isometric immersions ft : Mn → R

m, t ∈ (−ε, ε), ε > 0, having the same third funda-
mental form and satisfying f0 = f . The deformation is trivial if for each t there exists
a rigid motion τt such that ft = τt ◦ f . An immersion f is called III-deformable if there
exists a non-trivial III-deformation; f is said to be locally III- deformable if each point
of Mn has a neighborhood U such that f is III-deformable on U.

It turns out that III-deformations preserve the mean curvature. So III-deformable
immersions may be viewed as an extension of Bonnet surfaces in R

3, i.e., surfaces that
allow non-trivial deformations which preserve the mean curvature, or equivalently
the principal curvatures (cf. [3,11]).

The aim of this paper is to study locally III-deformable surfaces in R
4. Obviously,

non-totally geodesic minimal surfaces in R
4 or in a 3-sphere are locally III-deformable,

and the III-deformations are given by the associated family. As opposed to the codi-
mension-1 case, we prove the existence of families of locally III-deformable surfaces
in R

4 which are neither minimal nor minimal in a 3-sphere. By a result in [10], these
locally III-deformable surfaces do not allow isometric deformations with congruent
Gaussian images.

In fact, we show that surfaces lying fully in R
4 are locally III-deformable if the first

normal space is one-dimensional, i.e., if the Gauss map is not regular.
Furthermore, we provide a method that gives all locally III-deformable pseu-

doumbilical surfaces in R
4. To the best of our knowledge, this method yields the first

examples of pseudoumbilical surfaces which are neither minimal in R
4 nor minimal

in 3-spheres. The classification is based on the fact that a certain quadratic differential
is holomorphic for locally III-deformable pseudoumbilical surfaces in R

4. It is worth
mentioning that such surfaces are isothermic surfaces in the sense of Palmer [14].

Moreover, we obtain some global results for locally III-deformable surfaces, and
provide examples that justify the necessity of global assumptions.

2 Preliminaries

Let M2 be an oriented two-dimensional Riemannian manifold and f : M2 → R
4 an

isometric immersion equipped with the induced metric 〈, 〉 . In the sequel, all manifolds
under consideration are assumed to be connected. The normal bundle of f carries an
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orientation which is the one induced by that of R
4. The second fundamental form B

of f is given by the Gauss formula

∇Xdf (Y) = df (∇XY) + B(X, Y),

where ∇ is the connection of the induced bundle f ∗(TR
4) arising from the usual con-

nection in R
4, ∇ is the Levi–Civitá connection of M2 and X, Y are arbitrary tangent

vector fields. The shape operator Aξ associated with a section ξ of the normal bundle
of f is given by the Weingarten formula

∇Xξ = −df (Aξ X) + ∇⊥
Xξ ,

where ∇⊥ stands for the normal connection and X is a tangent vector field.
Let {e1, e2, e3, e4} be a local orthonormal frame field such that e1, e2 are tangent to

M2 and e3, e4 are normal to f . The dual forms ωj and the connection forms ωjk satisfy
the structure equations

dωj =
∑

k=1,2

ωjk ∧ ωk, j = 1, 2,

dωjk =
4

∑

l=1

ωjl ∧ ωlk, 1 ≤ j, k ≤ 4.
(2.1)

The shape operators A3, A4 with respect to e3, e4 are given by

A3 = ω13 ⊗ e1 + ω23 ⊗ e2, A4 = ω14 ⊗ e1 + ω24 ⊗ e2.

The Gaussian curvature K and the normal curvature Kn are defined, respectively, by

dω12 = −Kω1 ∧ ω2 and dω34 = −Knω1 ∧ ω2.

Then the structure equations imply that

K = det A3 + det A4, (2.2)

Kn = −〈[A3, A4] e1, e2〉 . (2.3)

Moreover, the mean curvature vector field is defined by

−→
H = 1

2
(traceA3) e3 + 1

2
(traceA4) e4.

The mean curvature H is given by H := |−→H |. The first normal space N1 of f at a point
x ∈ M2 is the vector space generated by the set {B(X, Y)|X, Y ∈ TxM2}.

According to Obata [13], the third fundamental form of f is given by

III(X, Y) =
〈

A2
3X, Y

〉

+
〈

A2
4X, Y

〉

, (2.4)

or equivalently

III(X, Y) = 2
〈

A−→
H

X, Y
〉

− K 〈X, Y〉 , (2.5)

where A−→
H

is the shape operator associated with
−→
H and X, Y are arbitrary tangent

vector fields of M2.
The immersion f is called pseudoumbilical if there exists a function λ such that

A−→
H

X = λX for any tangent vector field X. It is known (cf. [9]) that f is pseudoumbili-
cal if and only if its Gauss map is conformal which is equivalent to III = (2H2 −K) 〈, 〉 .
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3 Auxiliary results

Let f : M2 → R
4 be an isometric immersion of an oriented two-dimensional

Riemannian manifold M2 into R
4. Hereafter, we suppose that the mean curvature

is non-zero at each point. Then we may choose a global orthonormal frame field
{e3, e4} in the normal bundle such that e3 is the normalized mean curvature vector
field, i.e., e3 = −→

H /H and denote by A3 and A4 the corresponding shape operators.
Furthermore, we choose a local orthonormal frame field {e1, e2} in the tangent bundle
such that

ω13 = k1ω1 and ω23 = k2ω2, (3.1)

where k1 + k2 = 2H. Since traceA4 = 0, there exist functions µ and ρ such that

ω14 = µω1 + ρω2 and ω24 = ρω1 − µω2. (3.2)

It is obvious that the first normal space satisfies dim N1 ≥ 1. Moreover, dim N1 = 1
at a point x ∈ M2 if and only if A4 vanishes at x.

Let˜f : M2 → R
4 be another isometric immersion. Corresponding quantities for˜f

are denoted by the same symbol with tilde. We follow the above-mentioned notation
throughout the paper.

Appealing to (2.5), we verify that ˜III = III if and only if ˜A−→̃
H

= A−→
H

. Suppose now

that ˜III = III. Since traceA−→
H

= 2H and trace˜A−→̃
H

= 2˜H, we immediately get ˜H = H.

Hence, ˜f has non-zero mean curvature too and we may choose ẽ3 to be parallel to mean
curvature vector field of˜f . Consequently, we have ˜A3 = A3. Bearing in mind (2.4), we
deduce that ˜A2

4 = A2
4. If furthermore, dim N1 = 2, then det A4 = −µ2 − ρ2 < 0, and

we may define a tensor field T by T := A−1
4 ◦ ˜A4. From ˜A2

4 = A2
4, we readily verify

that T is orthogonal. On account of ˜A3 = A3 and (2.2), we obtain det ˜A4 = det A4.
Thus T is orientation preserving, and we have proved the following:

Lemma 1 Let f , ˜f : M2 → R
4 be isometric immersions of an oriented two-dimensional

Riemannian manifold M2.

(i) f , ˜f have the same third fundamental form if and only if ˜A−→̃
H

= A−→
H

.

(ii) If f , ˜f have the same third fundamental form, then they have the same mean
curvature.

(iii) If f has nowhere zero mean curvature, dim N1 = 2 and f , ˜f have the same third
fundamental form, then there exists an orientation preserving orthogonal tensor
field T such that ˜A4 = A4 ◦ T.

Now suppose that dim N1 = 2. According to Lemma 1(iii), we may write

T = cos ϕI + sin ϕJ

for some function ϕ, where I is the identity map of the tangent bundle TM2 and J is
the complex structure. Then we have

ω̃13 = ω13, ω̃23 = ω23, (3.3)

ω̃14 = cos ϕω14 + sin ϕω24 and ω̃24 = − sin ϕω14 + cos ϕω24. (3.4)
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Comparing the structure equations (2.1) of f and˜f , for j = 1, 2, k = 3, and using (3.3)
and (3.4), we find that

ω̃34 = cos ϕω34 − sin ϕ ∗ ω34, (3.5)

where ∗ denotes the Hodge star operator. Similarly, comparing the structure equations
(2.1) of f and˜f , for j = 1, 2, k = 4, and using (3.5), we get

dϕ = k1 − k2

µ2 + ρ2 sin ϕ
(

(µ cos ϕ + ρ sin ϕ)ω34 + (ρ cos ϕ − µ sin ϕ) ∗ ω34

)

. (3.6)

Again comparing the structure equations (2.1) for j = 3 and k = 4, we obtain

sin ϕdϕ ∧ ω34 + cos ϕdϕ ∧ ∗ω34 + sin ϕd ∗ ω34 = −µ(k1 − k2)ω1 ∧ ω2,

which in view of (3.6) is equivalently written as

d ∗ ω34 + µ(k1 − k2)

(

1 + |ω34|2
µ2 + ρ2

)

ω1 ∧ ω2 = 0. (3.7)

Setting

σ := cot ϕ,

we deduce that (3.6) is equivalent to

dσ = 	 + σ ∗ 	,

where 	 is the 1-form given by

	 := k1 − k2

µ2 + ρ2 (−ρω34 + µ ∗ ω34) .

From (2.3), (3.1) and (3.2), we easily get

Kn = ρ(k1 − k2) and trace(A3A4) = µ(k1 − k2). (3.8)

Bearing in mind (3.7) and (3.8), we have the following:

Lemma 2 Let f : M2 → R
4 be an isometric immersion of an oriented two-dimensional

Riemannian manifold M2 with nowhere zero mean curvature and dim N1 = 2. If there
exists another isometric immersion of M2 into R

4, geometrically distinct from f , having
the same third fundamental form, then the function σ satisfies

dσ = 	 + σ ∗ 	, (3.9)

where

	 = Kn

det A4
ω34 − trace(A3A4)

det A4
∗ ω34

and the normal connection form ω34 satisfies

d ∗ ω34 + trace(A3A4)

(

1 − |ω34|2
det A4

)

ω1 ∧ ω2 = 0. (3.10)

Conversely, if M2 is simply connected and f fulfills (3.10), then for any function σ that
satisfies (3.9) there exists an isometric immersion of M2 into R

4, geometrically distinct
from f , whose third fundamental coincides with that of f .
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The converse part of Lemma 2 follows from the fundamental theorem of subman-
ifolds. In fact, for a solution σ of Eq. (3.9), we consider the 1-forms

ω̃13 = ω13, ω̃23 = ω23, ω̃14 = cos ϕω14 + sin ϕω24,

ω̃24 = − sin ϕω14 + cos ϕω24 and ω̃34 = cos ϕω34 − sin ϕ ∗ ω34,

where ϕ is defined by ϕ := arccotσ . Then using (3.9) and (3.10), we readily verify
that ω1, ω2, ω12, ω̃jk, 1 ≤ j, k ≤ 4, satisfy the structure equations. According to the
fundamental theorem of submanifolds there exists an immersion of M2 into R

4 whose
third fundamental form coincides with that of f .

Now, we are ready to give necessary and sufficient conditions for a surface in R
4 to

be locally III-deformable.

Proposition 3 Let f : M2 → R
4 be an isometric immersion of an oriented two-

dimensional Riemannian manifold M2 with nowhere zero mean curvature and
dim N1 = 2.

(i) Then f is locally III-deformable if and only if (3.10) is fulfilled and

d ∗ 	 = 0, (3.11)

d	 + 	 ∧ ∗	 = 0. (3.12)

(ii) If f is locally III-deformable, then, away from pseudoumbilical points and points
where the normal connection form ω34 vanishes, the conformal metric

〈, 〉∗ = − (k1 − k2)
2|ω34|2

det A4
〈, 〉

has Gaussian curvature K∗ = −1.

Proof If f is locally III-deformable, then Eq. (3.9) admits infinitely many solutions,
which implies (3.11) and (3.12).

Conversely, we assume that (3.10), (3.11) and (3.12) are fulfilled. Since ∗	 is closed,
on any simply connected subset U we may write ∗	 = dF, for some function F. Then
(3.12) is equivalent to 
F = |∇F|2, where 
F and ∇F denote the Laplacian and
gradient of F, respectively. The 1-form e−F ∗ dF is closed and so we may define the
function σ by

σ(x) = −eF(x)

x
∫

x0

e−F ∗ dF, x, x0 ∈ U.

It is easy to verify that σt := teF +σ is a solution of Eq. (3.9) for any t ∈ R. This accord-
ing to Lemma 2 gives rise to a non-trivial III-deformation of f on U and therefore f
is locally III-deformable.

Now suppose that f is locally III-deformable and consider the 1-forms ω∗
1 := ∗	

and ω∗
2 := −	. Then 〈, 〉∗ = (

ω∗
1

)2 + (

ω∗
2

)2 , and (3.11) and (3.12) imply that ω∗
12 = ω∗

2,
where ω∗

12 is the connection form of 〈, 〉∗ . Since the Gaussian curvature of 〈, 〉∗ is given
by dω∗

12 = −K∗ω∗
1 ∧ ω∗

2, (3.12) yields K∗ = −1. �
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4 Surfaces satisfying dim N1 = 1

In this section, we consider surfaces in R
4 whose first normal space N1 is one-

dimensional. It is shown that such surfaces are locally III-deformable, provided that
they lie fully in R

4. This is a consequence of the following local classification of surfaces
in R

4 that satisfy dim N1 = 1.

Proposition 4 Let f : M2 → R
4 be an isometric immersion of a two-dimensional

Riemannian manifold M2 such that dim N1 = 1. Then locally

(i) f (M2) lies on an affine three-dimensional subspace of R
4,

(ii) f (M2) is part of a cylinder erected over a curve lying fully on an affine three-
dimensional subspace of R

4,
(iii) f (M2) is part of a cone shaped over a curve lying fully on a 3-sphere, or
(iv) f (M2) is part of the tangent surface of a curve lying fully in R

4.

Proof We choose a local orthonormal frame field {e3, e4} in the normal bundle such
that e3 spans N1 and a local orthonormal frame {e1, e2} in the tangent bundle such
that ω13 = k1ω1 and ω23 = k2ω2. Since ω14 = ω24 = 0, the structure equations (2.1)
for j = 1, 2, and k = 3 yield

e1(k2) = (k1 − k2)ω12(e2) and e2(k1) = (k1 − k2)ω12(e1). (4.1)

Similarly, from (2.1) for j = 1, 2, and k = 4, we get

k1ω1 ∧ ω34 = k2ω2 ∧ ω34 = 0. (4.2)

We distinguish the following cases.
Case 1 Assume that k1k2 �= 0 on a connected open subset U. Then (4.2) implies

that ω34 = 0, which means that e4 is parallel in the normal bundle. Since A4 = 0, the
Weingarten formula implies that e4 is constant on U. A standard argument shows that
f (U) lies on an affine three-dimensional subspace of R

4 which is perpendicular to e4.
Case 2 Assume that k1k2 = 0 and (k1, k2) �= (0, 0) on a connected open subset U.

Without loss of generality, we suppose that k2 = 0. Then (4.1) gives ω12(e2) = 0 and
consequently the integral curves of e2 are geodesics. Using the Gauss formula, we
see that these geodesics are mapped via f into straight lines. In addition, (4.2) yields
ω34(e2) = 0, and the Weingarten formula shows that e3 and e4 are constant along the
integral curves of e2. This means that the normal space and consequently the tangent
space is a fixed plane along each integral curve of e2. We choose local coordinates
(x, y) such that ∂

∂x is parallel to e1 and ∂
∂y is parallel to e2. The induced metric has the

form 〈, 〉 = Edx2 + Gdy2 and the connection form ω12 is given by

ω12 = − (
√

E)y√
G

dx + (
√

G)x√
E

dy.

From ω12(e2) = 0, we deduce that G depends only on y. We introduce new coordinates
(u, v), where v = ∫ √

G(y)dy is the arc length of the integral curves of e2, and u = x.
Furthermore, we set γ := f −vdf (e2) and r := df (e2). Using the Gauss formula, we get
dγ (e2) = 0, and so γ depends only on u. Moreover, in view of Weingarten formula,
we infer that r depends only on u. Consequently
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f (u, v) = γ (u) + vr(u), (4.3)

and f (U) is a ruled surface. Furthermore, we note that
〈

γ ′, r
〉 = 0.

If r is constant, say a, then we easily get e2 (〈γ , a〉) = 0. Thus the curve γ lies on
an affine 3-space perpendicular to a, and (4.3) shows that f (U) is part of a cylinder
erected over γ .

Now suppose that r is not constant. Since the tangent plane remains constant along
the rulings, we deduce that r′ = pγ ′ + qr, for suitable functions p, q. Using

〈

γ ′, r
〉 = 0,

we get q = 0 and consequently r′ = pγ ′.
If p is constant, then r = pγ + c0, where c0 is constant. Hence, (4.3) shows that

f (U) is a cone with vertex at − 1
p c0.

If p is not constant, we consider the curve γ (u) := f (u, −1/p(u)). It is obvious that
γ ′(u) = p′(u)

p(u)
r(u). Then (4.3) shows that f (U) is part of the tangent surface of the curve

γ . �
Theorem 5 Every full isometric immersion f : M2 → R

4 of a two-dimensional
Riemannian manifold M2 with nowhere zero mean curvature and dim N1 = 1 is locally
III-deformable.

Proof According to Proposition 4, we consider the following cases.
Case 1 Assume that f (M2) is part of a cylinder erected over a curve lying fully on

an affine three-dimensional subspace of R
4. Without loss of generality we assume that

f (u, v) = (γ (u), v), where γ is a unit speed curve in R
3 with curvature k > 0 and torsion

τ �= 0. The immersion f has induced metric 〈, 〉 = du2 + dv2, and third fundamental
form III = k2du2. Let γt, t ∈ R, be a family of unit speed curves in R

3 with curvature
kt = k, torsion τt = (1 − t)τ and γ0 = γ . Then ft, t ∈ R, given by ft(u, v) = (γt(u), v), is
a non-trivial III-deformation of f .

Case 2 Assume that f (M2) is part of a cone shaped over a curve lying fully on a
3-sphere S3. Without loss of generality we assume that f (u, v) = vγ (u), v > 0, where
γ is a unit speed curve in S3 with curvature k > 0 and torsion τ �= 0. The immersion
f has induced metric 〈, 〉 = v2du2 + dv2, and third fundamental form III = k2

v2 du2.
Let γt, t ∈ R, be a family of unit speed curves in S3 with curvature kt = k, torsion
τt = (1 − t)τ and γ0 = γ . Then ft, t ∈ R, given by ft(u, v) = vγt(u), is a non-trivial
III-deformation of f .

Case 3 Assume that f (M2) is part of the tangent surface of a curve lying fully in
R

4. This means that f (u, v) = γ (u) + vγ ′(u), v > 0, where γ is a unit speed curve
in R

4 with curvatures k1 > 0, k2 and k3 �= 0. The immersion f has induced metric
〈, 〉 = (1 + k2

1v2)du2 + 2dudv + dv2, and third fundamental form III = k2
2du2. Let

γt, t ∈ R, be a family of unit speed curves in R
4 with curvatures k1,t = k1, k2,t = k2,

k3,t = (1 − t)k3 and γ0 = γ . Then ft, t ∈ R, given by ft(u, v) = γt(u) + vγ ′
t (u), is a

non-trivial III-deformation of f . �
We note that Theorem 5 is not true without the assumption of fullness since by [5]

the only locally III-deformable surfaces in R
3 are the minimal ones.

5 Pseudoumbilical surfaces

In this section, we consider pseudoumbilical surfaces in R
4 which are locally III-

deformable and provide a method for producing all such surfaces. Let f : M2 → R
4 be
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a pseudoumbilical isometric immersion of an oriented two-dimensional Riemannian
manifold M2 with nowhere zero mean curvature H. In the notation of Sect. 3, this is
equivalent to k1 = k2 = H. The umbilical points of f , i.e., points where H2 = K, are
precisely the points where dim N1 = 1.

From (2.3) we get Kn = 0. Since trace(A3A4) = 0, the 1-form 	 vanishes on M2\M0,
where M0 is the set of umbilical points. Then from Lemma 2 and Proposition 3, we
conclude that if there exists locally a geometrically different isometric immersion ˜f
with the same third fundamental form, then f is locally III-deformable. Moreover, in
this case the only solutions to Eq. (3.9) are the constant ones. Thus locally III-deform-
able pseudoumbilical surfaces in R

4 allow a sort of associated family like minimal
surfaces.

It is easy to see that round 2-spheres in R
4 are not locally III-deformable. Hence, if

f is locally III-deformable, then the set of non-umbilical points M2\M0 is dense in M2.
Proposition 3 yields the following simple criterion for a pseudoumbilical surface to

be locally III-deformable.

Lemma 6 Let f : M2 → R
4 be an umbilic-free pseudoumbilical isometric immersion

of an oriented two-dimensional Riemannian manifold M2 with nowhere zero mean
curvature. Then f is locally III-deformable if and only if the normal connection form
ω34 is co-closed, i.e., d ∗ ω34 = 0.

On account of k1 = k2 = H, (3.1) and (3.2), the structure equations (2.1) for
j = 1, 2 and k = 3 are equivalent to

e1(H) = −µω34(e1) − ρω34(e2),

e2(H) = −ρω34(e1) + µω34(e2).

From these and using H2 − K = µ2 + ρ2, we easily get

|∇H|2 = (H2 − K)|ω34|2, (5.1)

where ∇H stands for the gradient of the mean curvature.
Hence if a point x ∈ M2 is not a critical point of the mean curvature H, then x is

not an umbilical point of f , and the normal connection form ω34 does not vanish at x.
By means of isothermal coordinates, M2 may be viewed as a Riemann surface.

Let TM2 ⊗ C be the complexified tangent bundle. For a local complex coordinate
z = x + iy we set as usual

∂

∂z
= 1

2

(

∂

∂x
− i

∂

∂y

)

.

Proposition 7 Let f : M2 → R
4 be a pseudoumbilical isometric immersion of an ori-

ented two-dimensional Riemannian manifold M2 with nowhere zero mean curvature.
Assume that f is locally III-deformable. Then

(i) The complex valued function φ := 4(ω34(
∂
∂z ))2 is holomorphic, where z = x + iy

is a local complex coordinate and ω34 is linearly extended to TM2 ⊗C. Moreover,
the holomorphic quadratic form � = φdz2 is defined globally on M2;

(ii) Either the normal connection form ω34 vanishes at isolated points only, or ω34
vanishes identically and f is minimal in a 3-sphere of R

4;

(iii) Away from critical points of the mean curvature, the metric 〈, 〉∗ = |∇H|2
H2−K

〈, 〉 is
flat.
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Proof According to Lemma 6, ∗ω34 is closed. Because of Kn = 0, the form ω34 is
closed too. Then around each point we may write

ω34 = dv and ∗ ω34 = −du,

for some functions u, v. Let z = x+ iy be a local complex coordinate. Then the induced
metric has the form 〈, 〉 = E(dx2 + dy2). From the above equations, we deduce that
the complex valued function u + iv satisfies the Cauchy–Riemann equations and
consequently φ is given by

φ = v2
x − v2

y − 2ivxvy.

Now it is easy to verify that φ satisfies the Cauchy–Riemann equations, and so it is
holomorphic.

To show that φdz2 is defined globally, let z̃ = x̃ + ĩy be another local complex
coordinate. Then on the common coordinate neighborhood we have

∂

∂z
= d̃z

dz
∂

∂ z̃
and ω34

(

∂

∂z

)

dz = ω34

(

∂

∂ z̃

)

d̃z.

Hence, ω34(
∂
∂z )dz is invariant under change of coordinates and � = φdz2 is defined

globally on M2.
On the other hand, we have |φ|2 = E2|ω34|4. Moreover, the holomorphicity of φ

implies that either the normal connection form ω34 vanishes at isolated points only,
or ω34 vanishes identically. In the latter case, it is easy to prove that f is minimal in a
3-sphere of R

4 (cf. [1]).
Now assume that the mean curvature has no critical points. Then (5.1) implies that

|ω34|2 > 0 or equivalently |φ|2 > 0. From the holomorphicity of φ, we get 
 log |φ|2 =
0, where 
 is the Laplacian of the induced metric. Therefore, 
 log |ω34|2 = −
 log E.
Since 
 log E = −2K, we finally get 
 log |ω34|2 = 2K. Hence, by virtue of (5.1), the

metric 〈, 〉∗ = |∇H|2
H2−K

〈, 〉 is flat. �

For the local classification of III-deformable pseudoumbilical surfaces in R
4 we

need the following auxiliary lemmas.

Lemma 8 ([2]) Let u : U → R be a smooth function such that 
0u = P(u) and
|∇0u|2 = Q(u) > 0, where U is an open subset of R

2, P, Q : R → R are smooth func-
tions, and 
0, ∇0 denote the Euclidean Laplacian and gradient operators, respectively.
Then the level curves of u are parallel lines or concentric circles.

Lemma 9 ([7]) Let M2 be a two-dimensional Riemannian manifold and u : M2 → R

a smooth function such that 
u = P(u) and |∇u|2 = Q(u), for smooth functions P, Q :
R → R, where ∇u denotes the gradient of u. Then on the open set

{

x ∈ M2 : ∇u(x) �= 0
}

the Gaussian curvature K satisfies

2KQ + (2P − Q′)(P − Q′) + Q(2P′ − Q′′) = 0.

Now we are ready to give the local description of pseudoumbilical surfaces in R
4

which are locally III-deformable.

Theorem 10 Let f : M2 → R
4 be a locally III-deformable pseudoumbilical isometric

immersion of an oriented two-dimensional Riemannian manifold M2 with nowhere
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zero mean curvature H. Then around each point, which is not a critical point of the
mean curvature, there exist local coordinates (x, y) such that the induced metric is given
by 〈, 〉 = eg(H)(dx2 + dy2) for a real valued function g. Moreover, one of the following
alternatives holds:

(i) g(H) = − log(c2 − H2), where c > 0 is a constant, and H satisfies


0H + 2H
c2 − H2 |∇0H|2 = −H. (5.2)

(ii) Away from points where g′′(H) − (g′(H))2 − 2eg(H) = 0, g is a solution of the
fourth-order differential equation

(2P − Q′)(P − Q′) + Q(2P′ − Q′′) = 0 (5.3)

with 2P − Q′ �= 0 and Q > 0, where

P(H) : = −Hg′′(H) + 2Heg(H) + 2H2eg(H)g′(H)

g′′(H) − (g′(H))2 − 2eg(H)
,

Q(H) : = Hg′(H) − 2H2eg(H)

g′′(H) − (g′(H))2 − 2eg(H)
.

Furthermore, the mean curvature has the form H(x, y) = h−1(
√

x2 + y2), where
h−1 is the inverse of the function h defined by

h(H) := 2
√

Q(H)

|2P(H) − Q′(H)| .

(iii) Away from points where g′′(H) − (g′(H))2 − 2eg(H) = 0, g is a solution of the
third-order differential equation 2P − Q′ = 0 with Q > 0, and H is a function of
x that satisfies

(

dH
dx

)2

= Q(H). (5.4)

Conversely, given a simply connected open subset U of R
2 and functions g and

H : U → R
+ as in (i), (ii) or (iii), then there exists a locally III-deformable

pseudoumbilical isometric immersion of the manifold
(

U, eg(H)(dx2 + dy2)
)

into
R

4 with mean curvature H.

Proof Let U be a simply connected neighborhood which is free of critical points
of the mean curvature, and consequently umbilic-free by (5.1). Then, we have � =
φ(w)dw2 �= 0 on U. By virtue of Proposition 7, we can pick a branch of

√
φ(w) and

choose complex coordinate z = z(w) = x + iy, determined up to an additive constant,
by integrating the 1-form

dz := i
√

� = i
√

φ(w)dw.

In these coordinates, we have � = −dz2. The induced metric has the form 〈, 〉 =
E(dx2 + dy2). As in the proof of Proposition 7, we pick functions u, v on U such that
ω34 = dv and ∗ω34 = −du. Then u + iv is holomorphic and

� = (v2
x − v2

y − 2ivxvy)dz2.
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Thus we get ux = vy = ±1 and uy = −vx = 0. Without loss of generality, we may
assume that v = y and u = x. Hence, we obtain

ω34 = dy and ∗ ω34 = −dx. (5.5)

We choose an orthonormal frame field {e1, e2} in the tangent bundle such that

e1 = 1√
E

∂

∂x
and e2 = 1√

E

∂

∂y
.

From (5.5), we get ω34(e1) = 0 and ω34(e2) = 1/
√

E. Using

ω1 = √
Edx, ω2 = √

Edy, ω12 = −1
2

(log E)y dx + 1
2

(log E)x dy

and (5.5), we readily verify that structure equations (2.1) for j = 1, 2 and k = 3, 4 are
equivalent to

µ = Hy, ρ = −Hx (5.6)

−µy + ρx + ρ (log E)x − µ (log E)y = H, (5.7)

µx + ρy + ρ (log E)y + µ (log E)x = 0. (5.8)

Combining (5.8) with (5.6), we get dH ∧ d log E = 0. This means that log E depends
on H, i.e., E = eg(H), for a function g. Thus

〈, 〉 = eg(H)(dx2 + dy2).

On account of (5.6), (5.7) is transformed to


0H + g′(H)|∇0H|2 = −H. (5.9)

From (2.2) we find that the Gaussian curvature K is given by K = H2 − µ2 − ρ2, or
equivalently by virtue of (5.6), K = H2 − |∇0H|2. Moreover, since

K = −
0 log E
2E

and E = eg(H),

we finally obtain

g′(H)
0H +
(

g′′(H) − 2eg(H)
)

|∇0H|2 = −2H2eg(H). (5.10)

Conversely, let H : U ⊂ R
2 → R be a positive solution of the overdetermined sys-

tem of the partial differential equations (5.9) and (5.10), where U is simply connected.
Then there exists a pseudoumbilical isometric immersion of the Riemannian manifold
(

U, eg(H)(dx2 + dy2)
)

into R
4 with mean curvature H which is locally III-deformable.

In fact, we consider the 1-forms

ω1 = e
g(H)

2 dx, ω2 = e
g(H)

2 dy, ω12 = − 1
2 g′(H)

(

Hydx − Hxdy
)

,

ω13 = Hω1, ω23 = Hω2,

ω14 = Hyω1 − Hxω2, ω24 = −Hxω1 − Hyω2 and ω34 = dy.

Using (5.9) and (5.10), one can easily verify that the 1-forms ω1, ω2, ωjk, 1 ≤ j, k ≤ 4,
fulfill the structure equations. According to the fundamental theorem of submani-
folds there exists an immersion with mean curvature H which, in view of Lemma 6,
is locally III-deformable. Thus the local classification of pseudoumbilical locally
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III-deformable surfaces in R
4 is reduced to the study of the overdetermined system

of equations (5.9) and (5.10).
We proceed with the study of this system and view it as a linear system with

unknowns 
0H and |∇0H|2. Its determinant is g′′(H)− (g′(H))2 −2eg(H). If the deter-
minant is identically zero, then (5.9) and (5.10) imply that g′(H) = 2Heg(H), and
consequently g(H) = − log(c2 − H2), where c is a positive constant. Moreover, the
system of equations (5.9) and (5.10) is equivalent to (5.2).

Now assume that g′′(H)−(g′(H))2−2eg(H) �= 0. Then (5.9) and (5.10) are equivalent
to


0H = P(H) and |∇0H|2 = Q(H) > 0, (5.11)

where

P(H) := −Hg′′(H) + 2Heg(H) + 2H2eg(H)g′(H)

g′′(H) − (g′(H))2 − 2eg(H)
,

Q(H) := Hg′(H) − 2H2eg(H)

g′′(H) − (g′(H))2 − 2eg(H)
.

This means that H is an isoparametric function and appealing to Lemma 5.2, we
see that g satisfies (5.3). According to Lemma 8, we have either H = H(r), where
r = √

x2 + y2, or H = H(x).
At first, we suppose that H = H(r). Then the Eqs. (5.11) are transformed to

dH
dr

= ε
√

Q(H) and
1
r

dH
dr

+ d2H
dr2 = P(H),

where ε = ±1. These imply that

r = 2ε
√

Q(H)

2P(H) − Q′(H)
= h(H).

The function h is invertible since by (5.3) we get

h′(H) = ε√
Q(H)

�= 0.

Thus we obtain H(x, y) = h−1(r).
Conversely, let g(t) be a function that satisfies (5.3) with 2P − Q′ �= 0 and Q > 0.

Using (5.3), we find that

h′(t) = ε√
Q(t)

,

where ε = 1, if 2P − Q′ > 0 and ε = −1, if 2P − Q′ < 0. This implies that s = h(t) is
invertible. In addition, we have

dh−1

ds
= ε

√

Q(h−1(s)) and
d2h−1

ds2 = 1
2

Q′(h−1(s)).

We consider the function H(x, y) = h−1(r). Then a direct computation shows that

|∇0H|2 =
(

dH
dr

)2

= Q(H)
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and


0H = 1
r

dh−1

ds
(r) + d2h−1

ds2 (r) = 1
r
ε

√

Q(h−1(r)) + 1
2

Q′(h−1(r)) = P(H).

Hence, H fulfills (5.11) and so H is a solution of the overdetermined system of equa-
tions (5.9) and (5.10).

Now assume that H = H(x). Then the second of (5.11) is equivalent to (5.4). Since


0H = d2H
dx2 ,

by virtue of the first equation of (5.11), we have

d2H
dx2 = P(H).

Moreover, using
(

dH
dx

)2

= Q(H),

we get 2P − Q′ = 0.
Conversely, let g(t) be a function that satisfies 2P−Q′ = 0 with Q > 0 and H = H(x)

be a positive solution of Eq. (5.4). Then we readily verify that 
0H = P(H) and so H
satisfies (5.11). Consequently, H is a positive solution of the system of equations (5.9)
and (5.10). This completes the proof. �
Remark 1 We recall that a surface in a Euclidean space is called isothermic in the
sense of [14], if there exist locally a pair of harmonic functions u1, u2 such that the
lines of curvature of each section of the normal bundle are contained in a level set
ui = const. It is obvious from the proof of Theorem 10 that a locally III-deformable
pseudoumbilical surface in R

4 is isothermic.

Remark 2 It is worth noticing that there exist flat locally III-deformable pseudoumbil-
ical surfaces. In fact, we consider the functions g(t) = −2 log t+c, t > 0, where c is a real
constant, and H(x) = e±x, x ∈ R. It is easy to see that g and H satisfy the assumptions
of Theorem 10(iii) and give rise to a locally III-deformable umbilic-free pseudoum-
bilical isometric immersion of the flat Riemannian manifold

(

R
2, ec±2x(dx2 + dy2)

)

into R
4.

6 Global results

In this section, we prove some results about locally III-deformable surfaces in R
4

under global assumptions.

Theorem 11 Let f : M2 → R
4 be a pseudoumbilical isometric immersion of a compact

oriented two-dimensional Riemannian manifold M2 with nowhere zero mean curvature.

(i) If f is locally III-deformable, then M2 is homeomorphic to the 2-sphere with g ≥ 1
handles.

(ii) If M2 has non-negative Gaussian curvature, then f is not locally III-deformable,
unless f (M2) is the Clifford torus in a 3-sphere of R

4.
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Proof We suppose that f is locally III-deformable. Moreover, assume in the contrary
that M2 is homeomorphic to the sphere S2. From Proposition 7(i), we know that the
global differential form � = φdz2 is holomorphic. Appealing to the Riemann–Roch
theorem, we deduce that � ≡ 0. Then the normal connection form vanishes identically,
and according to Proposition 7(ii), f is minimal in a 3-sphere of R

4. Since M2 is homeo-
morphic to S2, a well-known result shows that f (M2) is a standard round 2-sphere.
This is a contradiction, since round 2-spheres in R

4 are not locally III-deformable.
Now we assume that M2 has non-negative Gaussian curvature. By the Gauss

Bonnet theorem, M2 is homeomorphic to the sphere S2 or to the torus S1 × S1.
Moreover, we suppose that f is locally III-deformable. Then M2 is homeomorphic
to the torus and the Gaussian curvature is zero. Appealing to the Riemann–Roch
theorem, we deduce that � = φdz2 either vanishes identically or is nowhere zero.
Bearing in mind the fact that the zeros of � are precisely the points where ω34 van-
ishes, from (5.1) and the compactness of M2, we infer that � cannot be everywhere
non-zero. Thus � is identically zero. According to Proposition 7(ii), f is minimal in a
3-sphere of R

4. A result due to Lawson [12] shows that f (M2) is the Clifford torus in a
3-sphere. �
Theorem 12 Let f : M2 → R

4 be a locally III-deformable isometric immersion of an
oriented two-dimensional Riemannian manifold M2 with nowhere zero mean curva-
ture and dim N1 = 2. If M2 is compact, then f is minimal in a 3-sphere and M2 is
homeomorphic to the torus S1 × S1.

Proof We assume that f is locally III-deformable. From Proposition 3, we know that
the globally defined 1-form 	 (see Lemma 2) satisfies d	 + 	 ∧ ∗	 = 0 on M2.
Integrating and using Stokes’ theorem, we get

∫

M2

|	|2dA = 0,

where dA is the volume element of M2. Hence 	 = 0 everywhere. Since

|	|2 = − (k1 − k2)
2

det A4
|ω34|2,

we deduce that (k1 − k2)
2 |ω34|2 = 0 on M2. We claim that f is pseudoumbilical.

Assume in the contrary that k1 �= k2 on an open subset U. Then ω34 vanishes on U,
and so Kn = 0 on U. By virtue of (3.8), we get ρ = 0 on U. Moreover, (3.10) yields
trace(A3A4) = 0, or equivalently in view of (3.8), µ = 0 on U. This contradicts the
assumption dim N1 = 2. Therefore, f is pseudoumbilical. In addition, f is umbilic-free
since dim N1 = 2. Hence, the shape operator A4 associated with e4 is not proportional
to the identity transformation. This implies that M2 allows a smooth one-dimensional
distribution by choosing at each point x ∈ M2 the set of all vectors in TxM2 which
are eigenvectors of A4 corresponding to the largest eigenvalue. Consequently, M2 is
homeomorphic to the torus S1 × S1. Then the Riemann–Roch theorem implies that
the holomorphic differential form � = φdz2 either vanishes identically or is nowhere
zero. On account of (5.1), the compactness of M2, and the fact that f is umbilic-free,
we infer that � = φdz2 can not be everywhere non-zero. Thus � = φdz2 vanishes
identically or equivalently ω34 is identically zero. In view of Proposition 7(ii), f is
minimal in a 3-sphere. �
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The following is an immediate consequence of Theorem 12.

Corollary 13 Let f : M2 → R
4 be an isometric immersion of an oriented two-dimen-

sional Riemannian manifold M2 with dim N1 = 2. If M2 is compact with non-negative
Gaussian curvature, then f is not locally III-deformable, unless f (M2) is the Clifford
torus in a 3-sphere of R

4.

Proof We claim that the mean curvature H is nowhere zero. In fact, if H(x) = 0 at
a point x ∈ M2, then (2.2) yields K(x) ≤ 0. So, K(x) = 0 and f is totally geodesic
at x. This contradicts the assumption dim N1 = 2. Now assume that f is locally III-
deformable. Theorem 12 shows that f is pseudoumbilical and Theorem 11(ii) implies
that f (M2) is the Clifford torus in a 3-sphere. �

The following examples justify the necessity of compactness in Theorem 12.

Example 1 Let (x(s), y(s)), s ∈ I ⊆ R, be a unit speed plane curve. We consider the
immersion f : I × R → R

4 defined by

f (s, t) = (x(s) cos(ct), x(s) sin(ct), y(s) cos t, y(s) sin t),

where c > 0 and c2x2(s) + y2(s) > 0, for any s ∈ I. The induced metric is 〈, 〉 =
ds2 + (

c2x2(s) + y2(s)
)

dt2. We consider the orthonormal frame field {e1, e2, e3, e4}
given by

e1 = ∂

∂s
, e2 = 1

√

c2x2(s) + y2(s)

∂

∂t
,

e3 = (
·
y(s) cos(ct),

·
y(s) sin(ct), − ·

x(s) cos t, − ·
x(s) sin t),

e4 = (y(s) sin(ct), −y(s) cos(ct), −cx(s) sin t, cx(s) cos t)
√

c2x2(s) + y2(s)
,

where dot denotes differentiation with respect to s. Obviously, e1, e2 are tangent, e3, e4
are normal, and ω1 = ds, ω2 = √

c2x2(s) + y2(s)dt. A straightforward computation
shows that e3 is parallel to the mean curvature vector and

ω13 = k1ω1, ω23 = k2ω2, ω14 = µω1 + ρω2, ω24 = ρω1 − µω2,

where

k1 = ··
x

·
y − ·

x
··
y, k2 =

·
xy − c2x

·
y

c2x2 + y2 , µ = 0 and ρ = c(x
·
y − ·

xy)

c2x2 + y2 .

Furthermore, we have

ω34 = −c(x
·
x + y

·
y)

c2x2 + y2 ω2.

The immersion f satisfies dim N1 = 2 if and only if x
·
y − ·

xy �= 0. It is obvious that f
fulfills (3.10). Moreover, the 1-form 	 is given by

	 = k2 − k1

ρ
ω34
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and satisfies (3.11). Hence, f is locally III-deformable if and only if (3.12) is fulfilled
or equivalently

⎛

⎝

x
·
x + y

·
y

√

c2x2 + y2

k2 − k1

ρ

⎞

⎠

·

= c(x
·
x + y

·
y)2

(

c2x2 + y2
) 3

2

(

k2 − k1

ρ

)2

. (6.1)

Viewing the curve (x(s), y(s)) as a graph of a function y(x) over x, the differential
equation (6.1) is transformed to

{
(

x + yy′) √

c2x2 + y2

(xy′ − y)
√

1 + (y′)2

(

y − c2xy′

c2x2 + y2 + y′′

1 + (y′)2

)

}′

= (x + yy′)2
√

c2x2 + y2

(xy′ − y)2
√

1 + (y′)2

(

y − c2xy′

c2x2 + y2 + y′′

1 + (y′)2

)2

, (6.2)

where prime denotes differentiation with respect to x. The condition dim N1 = 2 is now
equivalent to xy′ − y �= 0. Equation (6.2) is written in the form y′′′ = F(x, y, y′, y′′),
for some continuous function F defined on a sufficiently small open subset of R

4.
According to the existence theorem of ordinary differential equations, any solution
of (6.2) with appropriate initial conditions gives rise to a non-pseudoumbilical locally
III-deformable surface in R

4 with dim N1 = 2.

Example 2 Let (x(s), y(s)), s ∈ I ⊆ R, be a unit speed plane curve. We consider the
immersion f : I × R → R

4 defined by

f (s, t) = (x(s), ct, y(s) cos t, y(s) sin t),

where c > 0. The induced metric is 〈, 〉 = ds2 + (

y2(s) + c2) dt2. We consider the
orthonormal frame field {e1, e2, e3, e4} given by

e1 = ∂

∂s
, e2 = 1

√

y2(s) + c2

∂

∂t
,

e3 = (− ·
y(s), 0,

·
x(s) cos t,

·
x(s) sin t), e4 = (0, −y(s), −c sin t, c cos t)

√

y2(s) + c2
,

where dot denotes differentiation with respect to s. Obviously, e1, e2 are tangent, e3, e4
are normal, and ω1 = ds, ω2 = √

y2(s) + c2dt. A straightforward computation shows
that e3 is parallel to the mean curvature vector and

ω13 = k1ω1, ω23 = k2ω2, ω14 = µω1 + ρω2, ω24 = ρω1 − µω2,

where

k1 = ·
x

··
y − ··

x
·
y, k2 = −

·
xy

y2 + c2 , µ = 0 and ρ = c
·
y

y2 + c2 .

In addition, we get

ω34 = c
·
x

y2 + c2 ω2.
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The immersion f satisfies dim N1 = 2 if and only if
·
y �= 0. It is clear that f fulfills (3.10).

Moreover, the 1-form 	 is given by

	 = k2 − k1

ρ
ω34

and satisfies (3.11). Hence, f is locally III-deformable if and only if (3.12) is fulfilled
or equivalently

⎛

⎝

·
x (k2 − k1)

ρ
√

y2 + c2

⎞

⎠

·

+ c
√

y2 + c2

⎛

⎝

·
x (k2 − k1)

ρ
(

y2 + c2
)

⎞

⎠

2

= 0. (6.3)

Viewing the curve (x(s), y(s)) as a graph of a function y(x) over x, the differential
equation (6.3) is transformed to

{
√

c2 + y2

y′√1 + (y′)2

(

y
c2 + y2 + y′′

1 + (y′)2

)

}′

=
√

c2 + y2

c(y′)2
√

1 + (y′)2

(

y
c2 + y2 + y′′

1 + (y′)2

)2

, (6.4)

where prime denotes differentiation with respect to x. The condition dim N1 = 2 is
equivalent to y′ �= 0. As in Example 1, any solution of (6.4) with appropriate initial
conditions gives rise to a non-pseudoumbilical locally III-deformable surface in R

4

with dim N1 = 2.

Remark 3 We do not know whether Examples 1 and 2 are the only non-pseudoum-
bilical locally III-deformable surfaces in R

4 with dim N1 = 2.

Remark 4 Chen [1] introduced the notion of allied mean curvature. In the notation
of Sect. 3, the allied mean curvature A(

−→
H ) of an isometric immersion f : M2 → R

4

with nowhere zero mean curvature is given by

A(
−→
H ) = H

2
trace(A3A4)e4.

The immersion f is called A-immersion if the allied mean curvature A(
−→
H ) vanishes

identically. The immersions given in Examples 1 and 2 are indeed non-pseudoumbili-
cal A-immersions and were inspired by [8].

Remark 5 Let f : M2 → R
4 be an isometric immersion with nowhere zero mean

curvature and dim N1 = 2. From Proposition 3 it follows that, if M2 is compact and
the allied mean curvature A(

−→
H ) is nowhere zero, then f is not locally III-deformable.
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