Skip to main content
Log in

Cuttlefish rely on both polarized light and landmarks for orientation

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Cuttlefish are sensitive to linear polarization of light, a sensitivity that they use in predation and possibly in intraspecific communication. It has also been shown that cuttlefish are able to solve a maze using visual landmarks. In this study, cuttlefish were trained to solve a Y-maze with the e-vector of a polarized light and landmarks as redundant spatial information. The results showed that cuttlefish can use the e-vector orientation and landmarks in parallel to orient and that they are able to use either type of cue when the other one is missing. When they faced conflicting spatial information in the experimental apparatus, the majority of cuttlefish followed the e-vector rather than landmarks. Differences in response latencies in the different conditions of testing (training with both types of cue, tests with single cue or with conflicting information) were observed and discussed in terms of decision making. The ability to use near field and far field information may enable animals to interpret the partially occluded underwater light field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves C, Chichery R, Boal JG, Dickel L (2007) Orientation in the cuttlefish Sepia officinalis: response versus place learning. Anim Cogn 10:29–36. doi:10.1007/s10071-006-0027-6

    Article  PubMed  Google Scholar 

  • Boal JG, Shashar N, Grable M, Vaughan K, Loew E, Hanlon RT (2004) Behavioral evidence for intraspecific signaling with achromatic and polarized light by cuttlefish (Mollusca: Cephalopoda). Behaviour 141:837–861. doi:10.1163/1568539042265662

    Article  Google Scholar 

  • Darmaillacq A-S, Chichery R, Poirier R, Dickel L (2004) Effect of early feeding experience on subsequent prey preference by cuttlefish, Sepia officinalis. Dev Psychobiol 45:239–244. doi:10.1002/dev.20034

    Article  PubMed  Google Scholar 

  • Darmaillacq A-S, Chichery R, Shashar N, Dickel L (2006) Early familiarization overrides innate prey preference in newly hatched Sepia officinalis cuttlefish. Anim Behav 71:511–514. doi:10.1016/j.anbehav.2005.04.019

    Article  Google Scholar 

  • Dickel L, Boal JG, Budelmann BU (2000) The effect of early experience on learning and memory in cuttlefish. Dev Psychobiol 36:101–110

    Article  PubMed  CAS  Google Scholar 

  • Diez-Chamizo V, Sterio D, Mackintosh NJ (1985) Blocking and overshadowing between intra-maze and extra-maze cues: a test of the independence of locale and guidance learning. Q J Exp Psychol B 37:235–253

    Article  Google Scholar 

  • Gallistel CR (1990) The organization of learning. The MIT Press, Cambridge

    Google Scholar 

  • Gibson BM, Shettleworth SJ (2003) Competition among spatial cues in a naturalistic food-carrying task. Anim Learn Behav 31:143–159

    Article  Google Scholar 

  • Gibson BM, Shettleworth SJ (2005) Place versus response learning revisited: tests of blocking on the radial maze. Behav Neurosci 119:567–586. doi:10.3758/BF03195977

    Article  PubMed  Google Scholar 

  • Healy S (1998) Spatial representation in animals. Oxford University Press, Oxford

    Google Scholar 

  • Horvath G, Varju D (2004) Polarized light in animal vision: polarization patterns in nature. Springer, Berlin

    Google Scholar 

  • Jander R, Waterman TH (1960) Sensory discrimination between polarized light and light intensity patterns by arthropods. J Cell Comp Physiol 56:137–159. doi:10.1002/jcp.1030560304

    Google Scholar 

  • Jander R, Daumer K, Waterman TH (1963) Polarized light orientation by two Hawaiian decapod cephalopods. Z Vgl Physiol 46:383–394. doi:10.1007/BF00340466

    Article  Google Scholar 

  • Jozet-Alves C, Moderan J, Dickel L (2008) Sex differences in spatial cognition in an invertebrate: the cuttlefish. Proc R Soc B 275:2049–2054. doi:10.1037/0735-7044.119.2.567

    Article  PubMed  Google Scholar 

  • Kraft P, Evangelista C, Dacke M, Labhart T, Srinivasan MV (2011) Honeybee navigation: following routes using polarized-light cues. Phil Trans R Soc B 366:703–708

    Article  PubMed  CAS  Google Scholar 

  • Lavenex P, Schenk F (1996) Integration of olfactory information in a spatial representation enabling accurate arm choice in the radial arm maze. Learn Mem 2:299–319. doi:10.1101/lm.2.6.299

    Article  PubMed  CAS  Google Scholar 

  • Lerner A, Sabbah S, Erlick C, Shashar N (2011) Navigation by light polarization in clear and turbid waters. Phil Trans R Soc B 366:671–679. doi:10.1098/rstb.2010.0189

    Article  PubMed  Google Scholar 

  • Lohmann KJ, Lohmann CMF, Endres CS (2008) The sensory ecology of ocean navigation. J Exp Biol 211:1719–1728. doi:10.1242/jeb.015792

    Article  PubMed  Google Scholar 

  • Luschi P, Seppia CD, Crosio E (1997) Orientation during short-range feeding in the crab Dotilla wichmanni. J Comp Physiol A 181:461–468

    Article  Google Scholar 

  • March J, Chamizo VD, Mackintosh NJ (1992) Reciprocal overshadowing between intra-maze and extra-maze cues. Q J Exp Psychol B 45:49–63

    PubMed  CAS  Google Scholar 

  • Mäthger LM, Barbosa A, Miner S, Hanlon RT (2006) Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay. Vision Res 46:1746–1753

    Article  PubMed  Google Scholar 

  • Messenger JB (1973) Learning in the cuttlefish, Sepia. Anim Behav 21:801–826

    Article  Google Scholar 

  • Nippak PM, Milgram MW (2005) An investigation of the relationship between response latency across several cognitive tasks in the beagle dog. Prog Neuropsychopharmacol Biol Psychiatry 29:371–377

    Article  PubMed  Google Scholar 

  • Odling-Smee L, Braithwaite VA (2003) The role of learning in fish orientation. Fish Fish 4:235–246

    Article  Google Scholar 

  • Parkyn DC, Austin JD, Hawryshyn CW (2003) Acquisition of polarized-light orientation in salmonids under laboratory conditions. Anim Behav 65:893–904. doi:10.1006/anbe.2003.2136

    Article  Google Scholar 

  • Pearce JM, Ward-Robinson J, Good M, Fussell C, Aydin A (2001) Influence of a beacon on spatial learning based on the shape of the test environment. J Exp Psychol 27:329–344

    Article  CAS  Google Scholar 

  • Redhead ES, Roberts A, Good M, Pearce JM (1997) Interaction between piloting and beacon homing by rats in a swimming pool. J Exp Psychol 23:340–350

    Article  CAS  Google Scholar 

  • Rossier J, Haeberli C, Schenk F (2000) Auditory cues support place navigation in rats when associated with a visual cue. Behav Brain Res 117:209–214

    Article  PubMed  CAS  Google Scholar 

  • Rozhok A (2008) Orientation and navigation in vertebrates. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Sabbah S, Lerner A, Erlick C, Shashar N (2005) Under water polarization vision—a physical examination. In: Pandalai SG (ed) Recent research developments in experimental and theoretical biology. TRN Press, Kerala, pp 123–176

    Google Scholar 

  • Shashar N, Rutledge PS, Cronin TW (1996) Polarization vision in cuttlefish—a concealed communication channel? J Exp Biol 199:2077–2084

    PubMed  Google Scholar 

  • Shashar N, Hanlon RT, deM Petz A (1998) Polarization vision helps detect transparent prey. Nature 393:222–223

    Article  CAS  Google Scholar 

  • Shashar N, Hagan R, Boal JG, Hanlon RT (2000) Cuttlefish use polarization sensitivity in predation on silvery fish. Vis Res 40:71–75. doi:10.1016/S0042-6989(99)00158-3

    Article  PubMed  CAS  Google Scholar 

  • Shashar N, Johnsen S, Lerner A, Sabbah S, Chiao CC, Mäthger LM, Hanlon RT (2011) Underwater linear polarization: physical limitations to biological functions. Phil Trans R Soc B 366:649–654. doi:10.1098/rstb.2010.0190

    Article  PubMed  Google Scholar 

  • Shettleworth SJ (2010) Getting around: spatial cognition. In: Shettleworth SJ (ed) Cognition, evolution, and behavior, 2nd edn. Oxford University Press, New York, pp 261–312

    Google Scholar 

  • Steck K, Hansson BS, Knaden M (2011) Desert ants benefit from combining visual and olfactory landmarks. J Exp Biol 214:1307–1312. doi:10.1242/jeb.053579

    Article  PubMed  Google Scholar 

  • Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff of the CREC for their technical assistance. This research was supported by a grant from the Ministère de l’Enseignement Supérieur et de la Recherche to L.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Dickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartron, L., Darmaillacq, AS., Jozet-Alves, C. et al. Cuttlefish rely on both polarized light and landmarks for orientation. Anim Cogn 15, 591–596 (2012). https://doi.org/10.1007/s10071-012-0487-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-012-0487-9

Keywords

Navigation