Skip to main content
Log in

Thymic epithelial requirement for γδ T cell development revealed in the cell ablation transgenic system with TSCOT promoter

  • Published:
Molecules and Cells

Abstract

In order to investigate the role of thymic epithelial cell (TEC) subsets during T-cell development, we established a new transgenic system, enabling inducible cell-specific ablation as well as marking the TEC subsets using bicistronic bacterial nitroreductase and EGFP genes. Two different lengths of the TSCOT promoter in transgenic mice, named 3.1T-NE and 9.1T-NE, drive EGFP expression into TECs. In adult life, EGFP expression was located in the medulla with a smaller 3.1 kb TSCOT promoter, while it was maintained in the cortex with a 9.1 kb promoter, suggesting putative TEC specific as well as compartment specific cis elements within two promoters. Nitroreductase induced cell death was specific without bystander killing upon the treatment of prodrugs such as nitrofurantoin and metronidazol. The degree of cell death was dependent on the dose of the prodrug in the cell and the fetal thymic organ cultures (FTOCs). Fetal thymic stromal populations were analyzed based on the expression levels of EpCAM, MHCII, CDR1 and/or UEA-1. EGFP expression patterns varied among subsets indicating the differential TSCOT promoter activity in each TEC subset. Prodrug treatment in FTOCs reduced the numbers of total and subsets of thymocytes. A CD4+CD8+ double positive cell population was highly susceptible in both transgenic lines. Surprisingly, there was a distinct reduction in γδ T cell population only in the 9.1T-NE thymus, indicating that they require a NTREGFP expressing TEC population. Therefore, these results support a division of labor within TEC subsets for the αβ and γδ lineage specification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, S., Lee, G., Yang, S.J., Lee, D., Lee, S., Shin, H.S., Kim, M.C., Lee, K.N., Palmer, D.C., Theoret, M.R., et al. (2008). TSCOT+ thymic epithelial cell-mediated sensitive CD4 tolerance by direct presentation. PLoS Biol. 6, e191.

    Article  PubMed  Google Scholar 

  • Alves, N.L., Huntington, N.D., Mention, J.J., Richard-Le Goff, O., and Di Santo, J.P. (2010). Cutting edge: a thymocyte-thymic epithelial cell cross-talk dynamically regulates intrathymic IL-7 expression in vivo. J. Immunol. 184, 5949–5953.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, G., and Jenkinson, E.J. (2007). Fetal thymus organ culture. CSH Protoc. 2007, pdb prot4808.

    PubMed  Google Scholar 

  • Anderson, G., Jenkinson, E.J., Moore, N.C., and Owen, J.J. (1993). MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362, 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, G., Jenkinson, E.J., and Rodewald, H.R. (2009). A roadmap for thymic epithelial cell development. Eur J. Immunol. 39, 1694–1699.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, G., and Takahama, Y. (2012). Thymic epithelial cells; working class heroes for T cell development and repertoire selection. Trends Immunol. 33, 256–263.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, S.M., and Hart, I.R. (1997). Nitroreductase activation of CB1954—an alternative ’suicide’ gene system. Gene Ther. 4, 80–81.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, S.M., Knox, R.J., Hobbs, S.M., Jenkins, T.C., Mauger, A.B., Melton, R.G., Burke, P.J., Connors, T.A., and Hart, I.R. (1996). Investigation of alternative prodrugs for use with E. coli nitroreductase in ’suicide gene’ approaches to cancer therapy. Gene Ther. 3, 1143–1150.

    PubMed  CAS  Google Scholar 

  • Balciunaite, G., Ceredig, R., Fehling, H.J., Zuniga-Pflucker, J.C., and Rolink, A.G. (2005). The role of Notch and IL-7 signaling in early thymocyte proliferation and differentiation. Eur. J. Immunol. 35, 1292–1300.

    Article  PubMed  CAS  Google Scholar 

  • Barbee, S.D., Woodward, M.J., Turchinovich, G., Mention, J.J., Lewis, J.M., Boyden, L.M., Lifton, R.P., Tigelaar, R., and Hayday, A.C. (2011). Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc. Natl. Acad. Sci. USA 108, 3330–3335.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, C.C., and Manley, N.R. (2004). Developing a new paradigm for thymus organogenesis. Nat. Rev. Immunol. 4, 278–289.

    Article  PubMed  CAS  Google Scholar 

  • Bowlus, C.L., Ahn, J., Chu, T., and Gruen, J.R. (1999). Cloning of a novel MHC-encoded serine peptidase highly expressed by cortical epithelial cells of the thymus. Cell Immunol. 196, 80–86.

    Article  PubMed  CAS  Google Scholar 

  • Boyden, L.M., Lewis, J.M., Barbee, S.D., Bas, A., Girardi, M., Hayday, A.C., Tigelaar, R.E., and Lifton, R.P. (2008). Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat. Genet. 40, 656–662.

    Article  PubMed  CAS  Google Scholar 

  • Bridgewater, J.A., Knox, R.J., Pitts, J.D., Collins, M.K., and Springer, C.J. (1997). The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cell-permeable metabolite. Hum. Gene Ther. 8, 709–717.

    Article  PubMed  CAS  Google Scholar 

  • Cahill, R.N., Kimpton, W.G., Washington, E.A., Holder, J.E., and Cunningham, C.P. (1999). The ontogeny of T cell recirculation during foetal life. Semin. Immunol. 11, 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Canelles, M., Park, M.L., Schwartz, O.M., and Fowlkes, B.J. (2003) The influence of the thymic environment on the CD4-versus-CD8 T lineage decision. Nat. Immunol. 4, 756–764.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Kim, M.G., Soo Lyu, M., Kozak, C.A., Schwartz, R.H., and Flomerfelt, F.A. (2000). Characterization of the mouse gene, human promoter and human cDNA of TSCOT reveals strong interspecies homology. Biochim. Biophys. Acta 1493, 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Ciofani, M., and Zuniga-Pflucker, J.C. (2010). Determining gammadelta versus alphas T cell development. Nat. Rev. Immunol. 10, 657–663.

    PubMed  CAS  Google Scholar 

  • Crompton, T., Outram, S.V., and Hager-Theodorides, A.L. (2007). Sonic hedgehog signalling in T-cell development and activation. Nat. Rev. Immunol. 7, 726–735.

    Article  PubMed  CAS  Google Scholar 

  • Dachs, G.U., Dougherty, G.J., Stratford, I.J., and Chaplin, D.J. (1997). Targeting gene therapy to cancer: a review. Oncol. Res. 9, 313–325.

    PubMed  CAS  Google Scholar 

  • Gray, D.H., Chidgey, A.P., and Boyd, R.L. (2002). Analysis of thymic stromal cell populations using flow cytometry. J. Immunol. Methods 260, 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Gray, D.H., Seach, N., Ueno, T., Milton, M.K., Liston, A., Lew, A.M., Goodnow, C.C., and Boyd, R.L. (2006). Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108, 3777–3785.

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson, E.J., and Owen, J.J. (1990). T-cell differentiation in thymus organ cultures. Semin. Immunol. 2, 51–58.

    PubMed  CAS  Google Scholar 

  • Jenkinson, E.J., and Anderson, G. (1994). Fetal thymic organ cultures. Curr. Opin. Immunol. 6, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Jo, D., Lyu, M.S., Cho, E.G., Park, D., Kozak, C.A., and Kim, M.G. (2001). Identification and genetic mapping of the mouse Fkbp9 gene encoding a new member of FK506-binding protein family. Mol. Cells 12, 272–275.

    PubMed  CAS  Google Scholar 

  • Kim, M.G., Chen, C., Flomerfelt, F.A., Germain, R.N., and Schwartz, R.H. (1998). A subtractive PCR-based cDNA library made from fetal thymic stromal cells. J. Immunol. Methods 213, 169–182.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.G., Flomerfelt, F.A., Lee, K.N., Chen, C., and Schwartz, R.H. (2000a). A putative 12 transmembrane domain cotransporter expressed in thymic cortical epithelial cells. J. Immunol. 164, 3185–3192.

    PubMed  CAS  Google Scholar 

  • Kim, M.G., Lee, G., Lee, S.K., Lolkema, M., Yim, J., Hong, S.H., and Schwartz, R.H. (2000b). Epithelial cell-specific laminin 5 is required for survival of early thymocytes. J. Immunol. 165, 192–201.

    PubMed  CAS  Google Scholar 

  • Kirchner, J., Forbush, K.A., and Bevan, M.J. (2001). Identification and characterization of thymus LIM protein: targeted disruption reduces thymus cellularity. Mol. Cell. Biol. 21, 8592–8604.

    Article  PubMed  CAS  Google Scholar 

  • Ladi, E., Yin, X., Chtanova, T., and Robey, E.A. (2006). Thymic microenvironments for T cell differentiation and selection. Nat. Immunol. 7, 338–343.

    Article  PubMed  CAS  Google Scholar 

  • Laky, K., and Fowlkes, B.J. (2008). Notch signaling in CD4 and CD8 T cell development. Curr. Opin. Immunol. 20, 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Laky, K., Fleischacker, C., and Fowlkes, B.J. (2006). TCR and Notch signaling in CD4 and CD8 T-cell development. Immunol. Rev. 209, 274–283.

    Article  PubMed  CAS  Google Scholar 

  • Lal, S., Lauer, U.M., Niethammer, D., Beck, J.F., and Schlegel, P.G. (2000). Suicide genes: past, present and future perspectives. Immunol. Today 21, 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Laufer, T.M. (2008) Tolerance to self: which cells kill? PLoS Biol. 6, e241.

    Article  PubMed  Google Scholar 

  • Laufer, T.M., DeKoning, J., Markowitz, J.S., Lo, D., and Glimcher, L.H. (1996). Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Laufer, T.M., Glimcher, L.H., and Lo, D. (1999). Using thymus anatomy to dissect T cell repertoire selection. Semin. Immunol. 11, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., Kim, M.G., Jeon, S.H., Park, D.E., Park, S.D., and Seong, R.H. (1998). Two species of mRNAs for the fyn proto-oncogene are produced by an alternative polyadenylation. Mol. Cells 8, 746–749.

    PubMed  CAS  Google Scholar 

  • Lee, G., Kim, M.G., Yim, J.B., and Hong, S.H. (2001). Alternative transcriptional initiation and splicing of mouse Lamc2 message. Mol. Cells 12, 380–390.

    PubMed  CAS  Google Scholar 

  • Moore, T.A., von Freeden-Jeffry, U., Murray, R., and Zlotnik, A. (1996). Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 -/- mice. J. Immunol. 157, 2366–2373.

    PubMed  CAS  Google Scholar 

  • Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., and Tanaka, K. (2007). Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  • Narayan, K., and Kang, J. (2007). Molecular events that regulate alphabeta versus gammadelta T cell lineage commitment: old suspects, new players and different game plans. Curr. Opin. Immunol. 19, 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Oosterwegel, M.A., Haks, M.C., Jeffry, U., Murray, R., and Kruisbeek, A.M. (1997). Induction of TCR gene rearrangements in uncommitted stem cells by a subset of IL-7 producing, MHC class-II-expressing thymic stromal cells. Immunity 6, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Park, D. (1997). Cloning, sequencing, and overexpression of SH2/SH3 adaptor protein Nck from mouse thymus. Mol. Cells 7, 231–236.

    PubMed  CAS  Google Scholar 

  • Park, J.H., Yu, Q., Erman, B., Appelbaum, J.S., Montoya-Durango, D., Grimes, H.L., and Singer, A. (2004). Suppression of IL7R alpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Im munity 21, 289–302.

    CAS  Google Scholar 

  • Park, J.H., Adoro, S., Guinter, T., Erman, B., Alag, A.S., Catalfamo, M., Kimura, M.Y., Cui, Y., Lucas, P.J., Gress, R.E., et al. (2010). Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Petrie, H.T. (2003). Cell migration and the control of post-natal Tcell lymphopoiesis in the thymus. Nat. Rev. Immunol. 3, 859–866.

    Article  PubMed  CAS  Google Scholar 

  • Petrie, H.T., and Zuniga-Pflucker, J.C. (2007). Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649–679.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, N.A., White, A.J., Jenkinson, W.E., Turchinovich, G., Nakamura, K., Withers, D.R., McConnell, F.M., Desanti, G.E., Benezech, C., Parnell, S.M., et al. (2012). Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity 36, 427–437.

    Article  PubMed  CAS  Google Scholar 

  • Rodewald, H.R. (2008).Thymus organogenesis. Annu. Rev. Immunol. 26, 355–388.

    Article  PubMed  CAS  Google Scholar 

  • Shakib, S., Desanti, G.E., Jenkinson, W.E., Parnell, S.M., Jenkinson, E.J., and Anderson, G. (2009). Checkpoints in the development of thymic cortical epithelial cells. J. Immunol. 182, 130–137.

    Article  PubMed  CAS  Google Scholar 

  • Takahama, Y. (2006). Journey through the thymus: stromal guides for T-cell development and selection. Nat. Rev. Immunol. 6, 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Takahama, Y., Nitta, T., Mat Ripen, A., Nitta, S., Murata, S., and Tanaka, K. (2010). Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin. Immunol. 22, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Tomaru, U., Ishizu, A., Murata, S., Miyatake, Y., Suzuki, S., Takahashi, S., Kazamaki, T., Ohara, J., Baba, T., Iwasaki, S., et al. (2009). Exclusive expression of proteasome subunit ta5t in the human thymic cortex. Blood 113, 5186–5191.

    Google Scholar 

  • White, A., Jenkinson, E., and Anderson, G. (2008). Reaggregate thymus cultures. J. Vis. Exp. 18, 905.

    PubMed  Google Scholar 

  • Wong, G.W., and Zuniga-Pflucker, J.C. (2010). gammadelta and alphabeta T cell lineage choice: resolution by a stronger sense of being. Semin. Immunol. 22, 228–236.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.J., Ahn, S., Park, C.S., Choi, S., and Kim, M.G. (2005). Identifying subpopulations of thymic epithelial cells by flow cytometry using a new specific thymic epithelial marker, Ly110. J. Immunol. Methods 297, 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.J., Ahn, S., Park, C.S., Holmes, K.L., Westrup, J., Chang, C.H., and Kim, M.G. (2006). The quantitative assessment of MHC II on thymic epithelium: implications in cortical thymocyte development. Int. Immunol. 18, 729–739.

    Article  PubMed  CAS  Google Scholar 

  • Yazawa, K., Fisher, W.E., and Brunicardi, F.C. (2002). Current progress in suicide gene therapy for cancer. World J. Surg. 26, 783–789.

    Article  PubMed  Google Scholar 

  • Zamisch, M., Moore-Scott, B., Su, D.M., Lucas, P.J., Manley, N., and Richie, E.R. (2005). Ontogeny and regulation of IL-7-expressing thymic epithelial cells. J. Immunol. 174, 60–67.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Gyo Kim.

About this article

Cite this article

Lee, G., Kim, K.Y., Chang, CH. et al. Thymic epithelial requirement for γδ T cell development revealed in the cell ablation transgenic system with TSCOT promoter. Mol Cells 34, 481–493 (2012). https://doi.org/10.1007/s10059-012-0246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0246-4

Keywords

Navigation