Skip to main content
Log in

Measurement and analysis of the stress distribution during die compaction using neutron diffraction

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The full axisymmetric stress state of a granular material undergoing compaction in a cylindrical die has been measured using a technique based on neutron powder diffraction. This technique allowed the detailed distribution of stress to be measured in situ, deep within a copper powder inside a solid die. Four components of normal strain were measured over a radial cross section. These components consisted of the axial, radial, hoop and an off-axis strain in the axial-radial direction. This allowed for the reconstruction of the full axisymmetric stress tensor as a distribution over the radial cross section. Many interesting features were observed in this distribution, such as exponential decay of the axial stress (described by Janssen in Zeitschrift des Vereines duetscher Ingenieure 39:1045, 1895), and highly localised regions of high shear stress. The potential of this type of data in the validation of numerical models is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sinka I.C.: Modelling powder compaction. KONA 25, 4 (2007)

    Google Scholar 

  2. Chtourou H., Guillot M., Gakwaya A.: Modelling of the metal powder compaction process using the cap model. Part I. Experimental material characterisation and validation. Int. J. Solids Struct. 39, 1059 (2002)

    Article  MATH  Google Scholar 

  3. Coube O., Riedel H.: Numerical simulation of metal powder die compaction with special consideration of cracking. Powder Metallur. 43, 123 (2000)

    Article  Google Scholar 

  4. Cunningham J.C., Sinka I.C., Zavaliangos A.: Analysis of tablet compaction. I. Characterisation of mechanical behaviour of powder and powder/tooling friction. J. Pharmaceut. Sci. 93, 2022 (2004)

    Article  Google Scholar 

  5. Han L.H., Elliot J.A., Bentham A.C., Mills A., Amidon G.E., Hancock B.C.: A modified Drucker–Prager Cap model for die compaction simulation of pharmaceutical powders. Int. J. Solids Struct. 45, 3088 (2008)

    Article  MATH  Google Scholar 

  6. Hassanpour A., Ghadiri M.: Distinct element analysis and experimental evaluation of the Heckel analysis of bulk powder compression. Powder Technol. 141, 251 (2004)

    Article  Google Scholar 

  7. Martin C.L., Bouvard D., Shima S.: Study of particle rearrangement during powder compaction by the discrete element method. J. Mech. Phys. Solids 51, 667 (2003)

    Article  ADS  MATH  Google Scholar 

  8. Sheng Y., Lawrence C.J., Briscoe B.J., Thornton C.: Numerical studies of uniaxial powder compactioin processes by 3D DEM. Eng. Comput. 21, 304 (2004)

    Article  MATH  Google Scholar 

  9. Nedderman R.M.: Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  10. Doelker E., Massuelle D.: Benefits of die-wall instrumentation for research and development in tableting. Eur. J. Pharmaceut. Biopharmaceut. 58, 427 (2004)

    Article  Google Scholar 

  11. Fitzpatrick, M.E., Lodini, A. (eds.): Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation. Taylor and Francis, London (2003)

    Google Scholar 

  12. Kisi E.H., Howard C.J.: Applications of Neutron Powder Diffraction. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  13. Bruel A., Kirstein O.: Residual stress diffractometer KOWARI at the Australian research reactor OPAL: status of the project. Phys. B Condens. Matter 385(386), 1040 (2006)

    Article  ADS  Google Scholar 

  14. Bagi K.: Stress and strain in granular assemblies. Mech. Mater. 22, 165 (1996)

    Article  Google Scholar 

  15. Christoffersen J., Mehrabadi M.M., Nemat-Nasser S.: A micromechanical description of granular material behaviour. J. Appl. Mech. 48, 339 (1981)

    Article  ADS  MATH  Google Scholar 

  16. Fortin J., Millet O., de Saxce G.: Construction of an averaged stress tensor for a granular medium. Eur. J. Mech. A Solids 22, 567 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goldhirsch I.: Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matter 12, 239 (2010)

    Article  Google Scholar 

  18. Weber J.: Recherches concernant les contraintes intergranulaires dans les milieux pulverulents. Bull. Liaison Physique et Chimie 20, 1–3 (1966)

    Google Scholar 

  19. Weinhart T., Thornton A.R., Luding S., Bokhove O.: From discrete particles to continuum fields near a boundary. Granul. Matter 14, 289 (2012)

    Article  Google Scholar 

  20. Owen D.R., Hinton E.: Finite Elements in Plasticity. Pineridge Press, Swansea (1980)

    MATH  Google Scholar 

  21. Janssen H.A.: Versuche über Getreidedruck in Silozellen (Investigation of corn pressure in silo cells). Zeitschrift des Vereines duetscher Ingenieure 39, 1045 (1895)

    Google Scholar 

  22. Sperl M.: Experiments on corn pressure in silo cells—translation and comment of Janssen’s paper from 1895. Granul. Matter 8, 59 (2006)

    Article  MATH  Google Scholar 

  23. Walker D.M.: An approximate theory for pressures and arching in hoppers. Chem. Eng. Sci. 21, 975 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Wensrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wensrich, C.M., Kisi, E.H., Zhang, J.F. et al. Measurement and analysis of the stress distribution during die compaction using neutron diffraction. Granular Matter 14, 671–680 (2012). https://doi.org/10.1007/s10035-012-0366-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0366-8

Keywords

Navigation