Skip to main content
Log in

Casimir forces in granular and other non equilibrium systems

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this paper we present a method to calculate Casimir Forces for non equilibrium systems with long range correlations. The origin of the force are the fluctuating fields, and the modification that the external, macroscopic objects induce in the spectrum of the fluctuations. The method is first illustrated with a simple model: a reaction-diffusion non-equilibrium system with an structure factor that possesses a characteristic length. The second part of the paper deals with a granular fluid where correlations are long ranged at all scales. In the first case the hydrodynamic fluctuations are confined by two plates, while in the second one the confinement comes from two immobile large and heavy particles. In both cases Casimir forces are calculated, and their properties analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Casimir H.B.G. (1948). Proc. K. Ned. Akad. Wet. 51: 793

    MATH  Google Scholar 

  2. Lamoreaux S.K. (1997). Phys. Rev. Lett. 78: 5

    Article  ADS  Google Scholar 

  3. Lamoreaux S.K. (1998). Phys. Rev. Lett. 81: 5475

    Article  ADS  Google Scholar 

  4. Mohideen U. and Roy A. (1998). Phys. Rev. Lett. 81: 4549

    Article  ADS  Google Scholar 

  5. Roy A., Lin C.-Y. and Mohideen U. (1999). Phys. Rev. D 60: 111101

    Article  ADS  Google Scholar 

  6. Milton K.A. (2004). J. Phys. A 37: R209

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Kardar M. and Golestanian R. (1999). Rev. Mod. Phys. 71: 1233

    Article  ADS  Google Scholar 

  8. Fisher M. and Gennes C.R. (1978). C. R. Acad. Sci. Ser. B 287: 207

    Google Scholar 

  9. Stanley H.G. (1971). Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford

    Google Scholar 

  10. Krech M. (1994). The Casimir Effect in Critical Systems. World Scientific, Singapore

    Google Scholar 

  11. Brankov, I., Danchev, D.M., Tonchev, N.S., Brankov, J.G.: Theory of Critical Phenomena in Finite-Size Systems: Scaling and Quantum Effects (Series in Modern Condensed Matter Physics, vol 9. World Scientific, Singapore (2000))

  12. Forster D. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. HarperCollins Canada, 1994

  13. deGennes P.G. and Prost J. (1993). The Physics of Liquid Crystals. Oxford University Press, Oxford

    Google Scholar 

  14. Ajdari A., Peliti L. and Prost J. (1991). Phys. Rev. Lett. 66: 1481

    Article  ADS  Google Scholar 

  15. Ueno T. (2003). Phys. Rev. Lett. 90: 116102

    Article  ADS  Google Scholar 

  16. Martín A. (1998). Phys. Rev. E 58: 2151

    Article  ADS  Google Scholar 

  17. Cardy J.L. (1987). Conformal invariance. In: Domb, C. and Lebowitz, J.L. (eds) Phase Transitions and Critical Phenomena, vol 11., pp. Academic, New York

    Google Scholar 

  18. Gambassi A. and Dietrich S. (2006). J. Stat. Phys. 123: 929

    Article  MATH  MathSciNet  Google Scholar 

  19. Dnatchev D. and Krech M. (2004). Phys. Rev. E 69: 046119

    Article  ADS  Google Scholar 

  20. Dorfman J.R., Kirkpatrick T.R. and Sengers J.V. (1994). Ann. Rev. Phys. Chem. 45: 213

    Article  Google Scholar 

  21. Machta J., Oppenheim I. and Procaccia I. (1979). Phys. Rev. Lett. 42: 1368

    Article  ADS  Google Scholar 

  22. Lutsko J.F. and Dufty J.W. (2002). Phys. Rev. E 66: 041206

    Article  ADS  Google Scholar 

  23. Procaccia I., Ronis D. and Oppenheim I. (1979). Phys. Rev. Lett. 42: 287

    Article  ADS  Google Scholar 

  24. Li W.B. (1998). Phys. Rev. Lett. 81: 5580

    Article  ADS  Google Scholar 

  25. Ortizde Zárate J.M. and Sengers J.V. (2006). Hydrodynamic Fluctuations in Fluids and Fluid Mixtures. Elsevier, Amsterdam

    Google Scholar 

  26. Spohn H. (1983). J. Phys. A 16: 4275

    Article  ADS  MathSciNet  Google Scholar 

  27. Garrido P.L. (1990). Phys. Rev. A 42: 1954

    Article  ADS  MathSciNet  Google Scholar 

  28. Grinstein G., Lee D.H. and Sachdev S. (1990). Phys. Rev. Lett. 64: 1927

    Article  ADS  Google Scholar 

  29. Pagonabarraga I. and Rubí M. (1994). Phys. Rev. E 49: 267

    Article  ADS  Google Scholar 

  30. Gardiner C.W. (2004). Handbook of Stochastic Methods. Springer, Heidelberg

    MATH  Google Scholar 

  31. Noije T.P.C. (1997). Phys. Rev. Lett 79: 411

    Article  ADS  Google Scholar 

  32. Noije T.P.C. (1999). Phys. Rev. E 59: 4326

    Article  ADS  Google Scholar 

  33. Family, F., Vicsek, T. (eds.) (1991). Dynamics of Fractal Surfaces. World Scientific, Singapore

    MATH  Google Scholar 

  34. Kardar M., Parisi G. and Zhang Y.C. (1986). Phys. Rev. Lett. 56: 889

    Article  MATH  ADS  Google Scholar 

  35. Roters L., Lübeck S. and Usadel K.D. (1999). Phys. Rev. E 59: 2672

    Article  ADS  Google Scholar 

  36. Martınez F.C. (1995). Phys. Rev. E 51: 835

    Article  ADS  Google Scholar 

  37. Beijeren H. (1990). J. Stat. Phys. 60: 845

    Article  Google Scholar 

  38. Ernst M.H. and Bussemaker H.J. (1995). J. Stat. Phys. 81: 515

    Article  MATH  MathSciNet  Google Scholar 

  39. Suárez A., Boon J.P. and Grosfils P. (1996). Phys. Rev. E 54: 1208

    Article  ADS  Google Scholar 

  40. Baldassarri A., Marini Bettolo Marconi U. and Puglisi A. (2002). Europhys. Lett. 58: 14

    Article  ADS  Google Scholar 

  41. Ernst M.H. and Brito R. (2002). Phys. Rev. E 65: 040301

    Article  ADS  Google Scholar 

  42. van Wijland, F., Oerding, K., Hilhorst, H.J. (1998). Physica A 251: 179

    Article  Google Scholar 

  43. García-Ojalvo J. and Sancho J.M. (1999). Noise in Spatially Extended Systems. Springer, New York

    MATH  Google Scholar 

  44. Ajdari A. (1992). J. Phys. II France 2: 487

    Article  Google Scholar 

  45. Gradshteyn I.S. and Ryzhik I.M. (1994). Table of Integrals, Series and Products. Academic, New York

    MATH  Google Scholar 

  46. Bordag M., Mohideen U. and Mostepanenko V.M. (2001). Phys. Reports 353: 1

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Reis P. and Mullin T. (2002). Phys. Rev. Lett. 89: 244301

    Article  ADS  Google Scholar 

  48. Aumaitre S., Kruelle C.A. and Rehberg I. (2001). Phys. Rev. E 64: 041305

    Article  ADS  Google Scholar 

  49. Schnautz T. (2005). Phys. Rev. Lett. 95: 028001

    Article  ADS  Google Scholar 

  50. Zuriguel I. (2005). Phys. Rev. Lett. 95: 258002

    Article  ADS  Google Scholar 

  51. Cattuto C. and Marini Bettolo Marconi U. (2004). Phys. Rev. Lett. 92: 174502

    Article  ADS  Google Scholar 

  52. Kudrolli A. (2004). Rep. Prog. Phys. 67: 209

    Article  ADS  Google Scholar 

  53. Peng G. and Ohta T. (1998). Phys. Rev. E 58: 4737

    Article  ADS  Google Scholar 

  54. Verlet L. and Levesque D. (1982). Mol. Phys. 46: 969

    Article  ADS  Google Scholar 

  55. Ernst M.H., Brito R. and Noije T.P.C. (1998). Phys. Rev. E 57: 4891

    Article  ADS  Google Scholar 

  56. Cattuto C. (2006). Phys. Rev. Lett. 96: 178001

    Article  ADS  Google Scholar 

  57. Gotzelmann B., Evans R. and Dietrich S. (1998). Phys. Rev. E 57: 6785

    Article  ADS  Google Scholar 

  58. Crocker J.C. (1999). Phys. Rev. Lett. 82: 4352

    Article  ADS  Google Scholar 

  59. Sanders D.A. (2004). Phys. Rev. Lett. 93: 208002

    Article  ADS  Google Scholar 

  60. Bose M. (2005). Phys. Rev. E 72: 021305

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brito, R., Soto, R. & Marconi, U.M.B. Casimir forces in granular and other non equilibrium systems. Granular Matter 10, 29–36 (2007). https://doi.org/10.1007/s10035-007-0056-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0056-0

Keywords

Navigation