Skip to main content

Advertisement

Log in

Repercussions of Simulated Climate Change on the Diversity of Woody-Recruit Bank in a Mediterranean-type Ecosystem

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Extreme climatic events have the potential to affect plant communities around the world, and especially in the Mediterranean basin, where the frequency of milder and drier summers is expected to be altered under a global-change scenario. We experimentally investigated the effect of three contrasting climatic scenarios on the diversity and abundance of the natural woody-recruit bank among three characteristic habitats in a Mediterranean-type ecosystem: forest, shrubland, and bare soil. The climatic scenarios were dry summers (30% summer rainfall reduction), wet summers (simulating summer storms), and current climatic conditions (control). Seedling emergence and survival after the first summer was recorded during 4 consecutive years. The wet summer boosted abundance and diversity at emergence and summer survival, rendering the highest Shannon H′ index. By contrast, the dry summer had no effect on emergence, although survival tended to decline. Nonetheless, the habitat had a key role, bare soil showing almost null recruitment whatever the climatic scenario, and forest keeping the highest diversity in all of them. Our results show that recruit-bank density and diversity depends heavily on extreme climatic events. Community dynamics will depend not only on increased drought but also on the balance between dry and wet years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Agrawal AA, Ackerly DD, Adler F, Arnold AE, Caceres C, Doak DF, Post E, Hudson PJ, Maron J, Mooney KA, Power M, Schemske D, Stachowicz J, Strauss S, Turner MG, Werner E. 2007. Filling key gaps in population and community ecology. Frontiers Ecol Environ 5:145–52.

    Article  Google Scholar 

  • Allen CD, Breshears DP. 1998. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci USA 95:14839–42.

    Article  PubMed  CAS  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–84.

    Article  Google Scholar 

  • Bey A. 2003. Evapoclimatonomy modelling of four restoration stages following Krakatau’s 1883 destruction. Ecol Model 169:327–37.

    Article  Google Scholar 

  • Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A. 2006. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–43.

    Article  Google Scholar 

  • Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J. 1998. Threatened vascular flora of Sierra Nevada (southern Spain). Biol Conserv 85:269–85.

    Article  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–44.

    Article  Google Scholar 

  • Breshears DP, Cobbs NS, Rich PM, Priece KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW. 2005. Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–8.

    Article  PubMed  CAS  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM. 2005. Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecol 181:191–202.

    Article  Google Scholar 

  • Chapin FSIII, Sala OE, Huber-Sannwald E. 2001. Global biodiversity in a changing environment. New York: Springer.

    Book  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon WK, Laprise R, Magana Rueda V, Mearns L, Menendez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Arritt R, Benestad R, Beniston M, Bromwich D, Caya D, Comiso J, de Elia R, Dethloff K. 2007. Regional climate projections, climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge, UK: University Press. pp 847–943.

    Google Scholar 

  • Colwell RK. 2005. EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. Persistent URL purl.oclc.org/estimates.

  • Eriksson O, Fröborg H. 1996. “Windows of opportunity” for recruitment in long lived clonal plants: experimental studies of seedling establishment in Vaccinum shrubs. Can J Bot 74:1369–74.

    Article  Google Scholar 

  • Esteban-Parra MJ, Rodrigo FS, Castro-Diez Y. 1998. Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int J Climatol 18:1557–74.

    Article  Google Scholar 

  • García D, Zamora R, Hódar JA, Gómez JM. 1999. Age structure of Juniperus communis L. in the Iberian peninsula: conservation of remnant populations in Mediterranean mountains. Biol Conserv 87:215–20.

    Article  Google Scholar 

  • Giorgi F, Lionello P. 2008. Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104.

    Article  Google Scholar 

  • Gómez JM. 2004. Bigger is not always better: conflicting selective pressures on seed size on Quercus ilex. Evolution 58:71–80.

    PubMed  Google Scholar 

  • Gómez-Aparicio L, Zamora R, Gómez JM. 2005. Analysis of the regeneration status of the endangered Acer opalus subsp. granatense throughout its geographical distribution in the Iberian Peninsula. Biol Conserv 121:195–206.

    Article  Google Scholar 

  • Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I, Matías L, Quero JL, Castro J, Zamora R, Marañón T. 2008. Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration under current and future environmental scenarios. Oikos 117:1683–99.

    Article  Google Scholar 

  • Hampe A, Arroyo J. 2002. Recruitment and regeneration in populations of an endangered South Iberian Tertiary relict tree. Biol Conserv 107:236–71.

    Article  Google Scholar 

  • Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–7.

    Article  PubMed  Google Scholar 

  • Henderson-Sellers A, Robinson PJ. 1991. Contemporary climatology. New York, USA: Longman Scientific & Technical.

    Google Scholar 

  • Holmgren M, Scheffer M. 2001. El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems 4:151–9.

    Article  Google Scholar 

  • Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Hice C, Jaksic F, Kelt DA, Letnic M, Lima M, López BC, Meserve PL, Milstead WB, Polis GA, Previtali MA, Richter M, Sabaté S, Squeo FA. 2006a. Extreme climatic events shape arid and semiarid ecosystems. Frontiers Ecol Environ 4:87–95.

    Article  Google Scholar 

  • Holmgren M, López BC, Gutiérrez JR, Squeo FA. 2006b. Herbivory and plant growth determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South America. Glob Change Biol 12:2263–71.

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D. 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • IPCC. 2007. Climate change, 2007. The physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge, UK: Cambridge University Press.

  • Jentsch A, Beierkuhnlein C. 2008. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. Geoscience 340:621–8.

    Article  Google Scholar 

  • Jump A, Hunt JM, Peñuelas J. 2007. Climate relationships of growth and establishment across the altitudinal range of Fagus sylvatica in the Montseny Mountains, NE Spain. Ecoscience 14:507–18.

    Article  Google Scholar 

  • Kalbfleisch JD, Prentice RL. 1980. The statistical analysis of failure time data. New York: Willey.

    Google Scholar 

  • Kitzberger T, Steinaker DF, Veblen TT. 2000. Effects of climatic variability on facilitation of tree establishment in Northern Patagonia. Ecology 81:1914–24.

    Article  Google Scholar 

  • Kullman L. 2002. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77.

    Article  Google Scholar 

  • Lázaro A, Traveset A, Castillo A. 2006. Spatial concordance at a regional scale in the regeneration process of a circum-Mediterranean relict (Buxus balearica): connecting seed dispersal to seedling establishment. Ecography 29:683–96.

    Article  Google Scholar 

  • League K, Veblen T. 2006. Climatic variability and episodic Pinus ponderosa establishment along the forest-grassland ecotones of Colorado. For Ecol Manag 228:98–107.

    Article  Google Scholar 

  • Lewis-Smith RI. 1994. Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99:322–8.

    Article  Google Scholar 

  • Lloret F, Peñuelas J, Estiarte M. 2004. Experimental evidence of reduced diversity of seedlings due to climate modification in a Mediterranean-type community. Glob Change Biol 10:248–58.

    Article  Google Scholar 

  • Lloret F, Peñuelas J, Prieto P, Llorens L, Estiarte M. 2009. Plant community changes induced by experimental climate change: seedling and adult species composition. Perspect Plant Ecol Evol Syst 11:53–63.

    Article  Google Scholar 

  • Magurran AE. 2004. Measuring biological diversity. Oxford, UK: Blackwell Publishing.

    Google Scholar 

  • Matías L, Mendoza I, Zamora R. 2009. Consistent pattern of habitat and species selection by post-dispersal seed predators in a Mediterranean mosaic landscape. Plant Ecol 203:137–47.

    Article  Google Scholar 

  • Matías L, Zamora R, Mendoza I, Hódar JA. 2010. Seed dispersal pattern by large frugivorous mammals in a degraded mosaic landscape. Restor Ecol 18:619–27.

    Article  Google Scholar 

  • Matías L, Castro J, Zamora R. 2011. Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem. Glob Change Biol 17:1646–57.

    Article  Google Scholar 

  • Mendoza I, Gómez-Aparicio L, Zamora R, Matías L. 2009a. Recruitment limitation of forest communities in a degraded Mediterranean landscape. J Veg Sci 20:367–76.

    Article  Google Scholar 

  • Mendoza I, Zamora R, Castro J. 2009b. A seeding experiment for testing tree-community recruitment under variable environments: implication for forest regeneration and conservation in Mediterranean habitats. Biol Conserv 142:1491–9.

    Article  Google Scholar 

  • Ogaya R, Peñuelas J, Martínez-Vilalta J, Manguirón M. 2003. Effect of drought on diameter increment of Quercus ilex, Phylirea latifoia and Arbutus unedo in a holm oak forest of NE Spain. For Ecol Manag 180:175–84.

    Article  Google Scholar 

  • Pyke CR, Andelman SJ. 2007. Land use and land cover tools for climate adaptation. Clim Change 80:239–51.

    Article  Google Scholar 

  • Rodrigo FS. 2002. Changes in climate vatiability and seasonal rainfall extremes: a case study from San Fernando (Spain), 1821–2000. Theor Appl Clim 72:193–207.

    Article  Google Scholar 

  • Squeo FA, Holmgren M, Jiménez M, Albán L, Reyes J, Gutiérrez JR. 2007. Tree establishment along an ENSO experimental gradient in the Atacama desert. J Veg Sci 18:195–202.

    Article  Google Scholar 

  • Sternberg M, Brown VK, Masters GJ, Clarke IP. 1999. Plant community dynamics in a calcareous grassland under climate change manipulations. Plant Ecol 143:29–37.

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siquiera M, Grainger A, Hannah L, Huges L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williamns SE. 2004. Extinction risk from climate change. Nature 427:145–8.

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araújo M, Sykes MT, Prentice C. 2005. Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–50.

    Article  PubMed  CAS  Google Scholar 

  • Tilman D. 1998. Species composition, species diversity, and ecosystem processes: understanding the impacts of global change. In: Pace ML, Groffman PM, Eds. Success, limitations, and frontiers in ecosystems science. New York: Springer. p 452–72.

    Google Scholar 

  • Traveset A, Gulias J, Riera N, Mus M. 2003. Transition probabilities from pollination to establishment in a rare dioecious shrub species (Rhamnus ludovici-salvatoris) in two habitats. J Ecol 91:427–37.

    Article  Google Scholar 

  • Urbieta IR, Pérez-Ramos IM, Zavala MA, Marañón T, Kobe RK. 2008. Soil water content and emergence time control seedling establishment in three co-occurring Mediterranean oak species. Can J For Res 38:2382–93.

    Article  Google Scholar 

  • Valladares F, Sánchez-Gómez D. 2006. Ecophysiological traits associated with drought in Mediterranean tree seedlings: individual responses versus interspecific trends in eleven species. Plant Biol 8:688–97.

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Zhang QB, Ma KP. 2006. Treeline dynamics in relation to climate variability in the central Tianshan Mountains. Glob Ecol Biogeogr 15:406–15.

    Article  Google Scholar 

  • Weltzin JF, McPherson GR. 2000. Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology 81:3464–78.

    Article  Google Scholar 

  • Yahdjian L, Sala O. 2002. A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133:95–101.

    Article  Google Scholar 

  • Zamora R, Hódar JA, Matías L, Mendoza I. 2010. Positive adjacency effects mediated by seed disperser birds in pine plantations. Ecol Appl 20:1053–60.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Consejería de Medio Ambiente (Andalusian Government) and the Direction of the Sierra Nevada National Park for facilities and support to carry out the experiment. We also thank Nacho Villegas for invaluable field assistance, and David Nesbitt for English checking. This study was supported by the coordinated Spanish MEC Project DINAMED (CGL2005-05830-C03) and GESBOME (P06-RNM-1890) from the Excellence Research Programme of the Andalusian Government, and by a grant FPI-MEC (BES-2006-13562) to L.M. This research is part of the GLOBIMED network on forest research (www.globimed.net/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Matías.

Additional information

Author Contributions

RZ and JC designed experiment; LM performed research and analyzed the data; LM, RZ and JC wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matías, L., Zamora, R. & Castro, J. Repercussions of Simulated Climate Change on the Diversity of Woody-Recruit Bank in a Mediterranean-type Ecosystem. Ecosystems 14, 672–682 (2011). https://doi.org/10.1007/s10021-011-9437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9437-7

Key words

Navigation